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Notation

This section provides a concise reference describing notation used throughout this
document. If you are unfamiliar with any of the corresponding mathematical
concepts, [6] describe most of these ideas in chapters 2–4.

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by
context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a
1 at position i

diag(a) A square, diagonal matrix with diagonal entries
given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

v



CONTENTS

Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the ele-
ments of A that are not in B

G A graph

PaG(xi) The parents of xi in G

Indexing

ai Element i of vector a, with indexing starting at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a

Linear Algebra Operations

A> Transpose of matrix A

A+ Moore-Penrose pseudoinverse of A

A�B Element-wise (Hadamard) product of A and B

det(A) Determinant of A
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Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect to
X

∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
xf(x) or H(f)(x) The Hessian matrix of f at input point x∫

f(x)dx Definite integral over the entire domain of x∫
S
f(x)dx Definite integral with respect to x over the set S

Probability and Information Theory

a⊥b The random variables a and b are independent

a⊥b | c They are conditionally independent given c

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous vari-
able, or over a variable whose type has not been
specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

H(x) Shannon entropy of the random variable x

DKL(P‖Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and
covariance Σ
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Functions
f : A→ B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Sometimes
we write f(x) and omit the argument θ to lighten
notation)

log x Natural logarithm of x

σ(x) Logistic sigmoid,
1

1 + exp(−x)

ζ(x) Softplus, log(1 + exp(x))

π(x, y) Softmax,
exp(x)

exp(x) + exp(y)

Πx(y) Indicator, y == x

||x||p Lp norm of x

||x|| L2 norm of x

x+ Positive part of x, i.e., max(0, x)

Sometimes we use a function f whose argument is a scalar but apply it to a vector,
matrix, or tensor: f(x), f(X), or f(X). This denotes the application of f to the
array element-wise. For example, if C = σ(X), then Ci,j,k = σ(Xi,j,k) for all valid
values of i, j and k.

Datasets and Distributions
pdata The data generating distribution

p̂data The empirical distribution defined by the training
set

X A set of training examples

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i) for supervised learn-
ing

X The m× n matrix with input example x(i) in row
Xi,:

L (θ) A Loss function to be optimised with respect to θ.
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Chapter 1

Introduction

1.1 Acknowledgements

This book was written to accompany the Deep Learning video lectures placed
in the public domain by Nando de Freitas [3].
The book is developed using the same style as used in the Deep Learning Book,
[6]. This style has been released for anyone to use freely, in order to help establish
some standard notation in the deep learning community.
This version of the notes makes use of Julia as the programming environment and
some sample code from the Flux package appears is referred to in the appendix of
this book as does sample code from the Julia Academy website, [5].

1.2 Guinea Pigs

The author thanks the following students for participating in an experimental course
on the topic of deep learning which took place at the University of KwaZulu-Natal
during the second semester of 2018.

• Devin Pelser

• Gabriel de Charmoy

• Mpilo Mshengu
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CHAPTER 1. INTRODUCTION

1.3 Machine Learning

According to Wikipedia, Machine learning is the scientific study of algorithms
and statistical models that computer systems use to effectively perform a specific
task without using explicit instructions, relying on patterns and inference instead.
Machine learning algorithms build a mathematical model of sample data, known as
training data, in order to make predictions or decisions without being explicitly
programmed to perform the task.
Machine learning deals with the problem of extracting features from data so as
to solve many different predictive tasks. In his introductory lecture, [3] lists the
following areas for modern machine learning.

• Forecasting (e.g. Energy demand prediction, finance)

• Imputing missing data (e.g. Netflix recommendations)

• Detecting anomalies (e.g. Security, fraud, virus mutations)

• Classifying (e.g. Credit risk assessment, cancer diagnosis)

• Ranking (e.g. Google search)

• Summarising (e.g. News zeitgeist, social media sentiment)

• Decision making (e.g. AI, robotics, compiler tuning, trading )

In this book we study deep neural network which is but one of many possible
machine learning tools. In the next chapter we outline the linear algebra tools that
are required to understand and implement deep neural networks.

1.4 Introductory Notebook

In this version of the book we implement examples using Julia with Flux [5].
In appendix A the reader will find a link to a Jupyter notebook giving a short
introduction to the language features of the Julia language.

1.5 Next Chapter

In the next chapter we outline the linear algebra background required in order to
grasp essential deep learning concepts.

2



Chapter 2

Linear Algebra

2.1 Introductory

The reader should be familiar with the following from a first year math course:

• Matrices A = [aij ]

• Matrix addition and subtraction A+B = [aij + bij ]

• Scalar multiplication aB = [a bij ]

• Matrix multiplication AB =

[∑
k

aikbkj

]

• Inverse A−1A = AA−1 = I

• Transpose A> = [aji]

• Symmetric matrices A = A>

• Trace of a square matrix

– tr(A) =
∑

i aii the sum of diagonal elements
– Obvious: tr(A+B) = tr(A) + tr(B)

– Not obvious: tr(AB) = tr(BA)

• Determinants

• Partitioned matrices

3



CHAPTER 2. LINEAR ALGEBRA

2.2 Advanced

• Linear Independence
Let X be an n× p matrix of constants. The columns of X are said to be
linearly dependent if there exists v 6= 0 with Xv = 0. We will say that the
columns of X are linearly independent if Xv = 0 implies v = 0.

For example, to show that A−1 exists implies that the columns of A are
linearly independent.

Av = 0⇒ A−1Av = A−10⇒ v = 0

• Rank

– Row rank is the number of linearly independent rows
– Column rank is the number of linearly independent columns
– Rank of a matrix is the minimum of row rank and column rank
– rank(AB) = min (rank(A), rank(B))

• Eigenvalues and eigenvectors
Let A = [ai,j ] be an n× n matrix, then A is said to have an eigenvalue λ
and (non-zero) eigenvector x corresponding to λ if

Ax = λx.

– Eigenvalues are the λ values that solve the determinantal equation
|A− λI| = 0.

– The determinant is the product of the eigenvalues: |A| = ∏n
i=1 λi

• Spectral decomposition of symmetric matrices
every square and symmetric matrix A = [ai,j ] may be written

A = CDC>,

where the columns of C (which may also be denoted x1, . . . ,xn) are the
eigenvectors of A, and the diagonal matrix D contains the corresponding
eigenvalues.

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


4



CHAPTER 2. LINEAR ALGEBRA

The eigenvectors may be chosen to be orthonormal, so that C is an orthogonal
matrix. That is, CC> = C>C = I.

• Positive definite matrices

The n× n matrix A is said to be positive definite if

y>Ay > 0

for all n× 1 vectors y 6= 0. It is called non-negative definite (or sometimes
positive semi-definite) if y>Ay ≥ 0.

Example: Show X>X non-negative definite:

Let X be an n× p matrix of real constants and y be p× 1. Then Z = Xy
is n× 1, and

y> (X>X)y

= (Xy)>(Xy)

= Z>Z

=
n∑
i=1

Z2
i ≥ 0

For a symmetric matrix,

Positive definite

⇓
All eigenvalues positive

⇓
Inverse exists ⇔ Columns (rows) linearly independent

If a real symmetric matrix is also non-negative definite, as a variance-
covariance matrix must be, Inverse exists ⇒ Positive definite

For example, let A be square and symmetric as well as positive definite.

– Spectral decomposition says A = CDC>.

– Using y>Ay > 0, let y be an eigenvector, say the third one.

– Because eigenvectors are orthonormal,

5



CHAPTER 2. LINEAR ALGEBRA

y>Ay = y>CDC>y

= ( 0 0 1 · · · 0 )


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




0
0
1
...
0


= λ3

> 0

• Inverse of a diagonal matrix

Suppose D = [di,j ] is a diagonal matrix with non-zero diagonal elements. It
is easy to verify that D−1 = [1/di,j ]

• Eigenvalues positive ⇒ Inverse exists

Let A be symmetric and positive definite. Then A = CDC> and its
eigenvalues are positive. Let B = CD−1C> then B = A−1 and

AB = CDC>CD−1C> = I

BA = CD−1C>CDC> = I

So
A−1 = CD−1C>

• Square Root matrices

For symmetric, non-negative definite, diagonal matrices, define

D1/2 =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn


For a non-negative definite, symmetric matrix A, define

A1/2 = CD1/2C>

example: The square root of the inverse is the inverse of the square root

Let A be symmetric and positive definite, with A = CDC>.

Let B = CD−1/2C>. What is D−1/2?

6



CHAPTER 2. LINEAR ALGEBRA

Show B =
(
A−1

)1/2
BB = CD−1/2C>CD−1/2C>

= CD−1C> = A−1

Show B =
(
A1/2

)−1

A1/2B = CD1/2C>CD−1/2C> = I

BA1/2 = CD−1/2C>CD1/2C> = I

Just write A−1/2 = CD−1/2C>

2.3 Linear Algebra Notebook

Most high level programming Languages are equipped with Linear Algebra packages
that provide implementations for the linear algebra computations outlined in this
chapter.
In appendix A the reader will find a link to a Jupyter notebook that demonstrates
how to perform the common linear algebra computations described in this chapter
using the Julia language.

2.4 Next Chapter

In the next chapter of the book we study linear regression and show how to solve
the linear regression problem, either by using an exact solution provided by linear
algebra or by using a one neuron neural-network.

7



Chapter 3

Linear Regression

3.1 Outline

This lecture introduces us to the topic of supervised learning. Here the data
consists of input-output pairs. Inputs are also often referred to as features; while
outputs are known as targets or labels. The goal of the lecture is for you to:

• Understand the supervised learning setting.

• Understand linear regression, ie: least squares.

• Understand how to apply linear regression models to make predictions.

• Learn to derive the least squares estimate.

Why start with Linear supervised learning?

• Many real processes can be approximated with linear models.

• Linear regression often appears as a module of larger systems.

• Linear problems can be solved analytically.

• Linear prediction provides an introduction to many of the core concepts of
machine learning.

8



CHAPTER 3. LINEAR REGRESSION

3.2 Learning Data

We are given a training dataset of n instances of input-output pairs:

{x1:n, y1:n}

Each input xi is a row vector with d attributes, ie xi ∈ R1×d. The output, often
referred to as the target, will be assumed to be univariate for now, yi ∈ R
A typical data set with 4 instances and two attributes for the input and 4 instances
for the output could look like the data set in table 3.1

Wind People Energy
x1 100 2 y1 5
x2 50 42 y2 25
x3 45 31 y3 22
x4 60 35 y4 18

Table 3.1: A typical data set with 4 instances and two attributes.

3.3 The learning/prediction cycle

Given the training set {x1:n, y1:n}, we would like to learn a model of how the
inputs affect the outputs. Given this model and a new input, xn+1, we can use
the model to make a prediction for the output, ŷ(xn+1).
Thus learning and prediction is a two stage process:

1) TRAINING (learning)

Data Model
{x1:n, y1:n} → learner → θ

2) TESTING (prediction)

Model Prediction
{xn+1, θ} → predictor → ŷ(xn+1)

9



CHAPTER 3. LINEAR REGRESSION

3.4 Minimizing Least Squares Loss

For linear regression, our task is to learn the model parameters, θi, so that
ŷi =

∑
j θjxij is a good estimate for yi. Gauss tells us to do this by minimising

the loss function:

L (θ) =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi −
d∑
j=1

θjxij)
2

For neural networks the convention is that the first column of X is all ones which
we can achieve by either adding a column of ones or by dividing through each of
the training data, {xi, yi} by xi1 in which case the loss function now reads:

L (θ) =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − θ1 −
d∑
j=2

θjxij)
2

Here, θ1, is called the intercept, and it is the value of y when x = 0.
In our example from table 3.1, we divide each row, i, by xi1 then we learn θ by
minimising the squared distance between the observations and the regression line,
shown in figure 3.1.

x1 x3 x2 x4

θ1

ŷ3

y3

slope = θ2

model

Figure 3.1: The optimal model parameters, θ are found by minimising the the squared
distance between the observations and the regression line. We obtain θ by minimising
L (θ) =

∑4
i=1(yi − θ1 − θ2xi2)2 and then predict the output using ŷi = θ1 + xi2θ2. In this

case θ1 is the intercept on the y axis whilst θ2 is the slope of the optimal fit.

10



CHAPTER 3. LINEAR REGRESSION

3.5 General Linear Regression

In general the linear model is expressed as

ŷi =

d∑
j=1

xijθj = θ1 + xi2θ2 + . . . xidθd

where we have assumed that xi1 = 1 so that θ1 corresponds to the bias. In matrix
form the linear model is

ŷ = Xθ

So, in our example from table 3.1, we could add a column of ones to X and then
with n = 4 and d = 3 we now have the setup:

y =


5

25
22
18

 ,X =


1 100 2
1 50 42
1 45 31
1 60 35

 ,θ =

 θ1

θ2

θ3


For example, if we estimated θ as [1, 0, 0.5]T then by multiplying X by θ we would
get the following predictions on the training set:

ŷ =


1 100 2
1 50 42
1 45 31
1 60 35


 1

0
0.5

 =


2

22
16.5
18.5


Likewise, for a point we have never seen before, say x = [50, 20], we can predict by
augmenting with a one and computing the product ŷ = xθ as follows:

ŷ =
[

1 50 20
]  1

0
0.5

 = 11

Now we have laid out the notation it remains to determine how to estimate θ
efficiently.

11



CHAPTER 3. LINEAR REGRESSION

3.6 Optimization

Our aim is to minimise the quadratic loss between the output labels and the model
predictions which we write in matrix form as:

L (θ) =
n∑
i=1

(yi −
d∑
j=1

xijθj)
2 = (y −Xθ)T (y −Xθ) (3.1)

Since the loss is quadratic in θ we are assured of a unique minimum which we must
find using steepest descent. When d = 2 the loss function is a bowl as shown in
figure 3.2.

−1
0

1 −1

0

10

2

4

θ1

θ2

Figure 3.2: When d = 2 the loss function for θ = [θ1, θ2]T is a bowl shaped and the
gradients are in the direction of steepest ascent.

We can find the minimum using steepest descent. To do this we must differentiate
the loss function, L (θ) with respect to θ, to find the gradient and then update
our estimate for θ by subtracting a portion of the gradient and moving downhill.
To find the gradient we must differentiate a function with respect to a vector.
This should have been studied in 2nd year linear algebra but you can read [2]
to refresh your matrix calculus. You will need the following results from Matrix
differentiation.
Assuming that a matrix A is not a function of a vector θ then we can differentiate
with respect to θ as follows

12



CHAPTER 3. LINEAR REGRESSION

∂

∂θ
(Aθ) = AT (3.2)

and if A is symmetric as well then we can establish that

∂

∂θ
(θTAθ) = 2ATθ (3.3)

Exercise Try to construct proofs for the above two results using [2].

The gradient of the loss function is then obtained as follows

∂

∂θ
L (θ) =

∂

∂θ
(y −Xθ)T (y −Xθ)

=
∂

∂θ
(yTy − 2yTXθ + θTXTXθ)

= −2XTy + 2XTXθ (3.4)

We can use the gradient to update θ iteratively until we reach the minimum or we
can set ∂

∂θL (θ) = 0 and solve for θ to get an exact solution as follows:

θ = (XTX)−1XTy (3.5)

Using a linear algebra package it is simple enough to obtain the exact solution to a
linear regression problem, however the exact solution can be a poisoned chalice as
the matrixX is often ill-conditioned and the matrix inversion cannot be performed.
So an iterative solution via steepest descent is the way to go.

3.7 Linear Regression Notebook

in appendix A the reader will find a link to a Jupyter notebook that uses the Julia
language and the Flux package to demonstrate how to perform linear regression
using both the exact linear algebra formulations and the optimisation techniques
described in this chapter.

13



CHAPTER 3. LINEAR REGRESSION

3.8 Next Chapter

In the next chapter, we learn to derive the linear regression estimates by maximum
likelihood with multivariate Gaussian distributions. This leads on to a discussion on
Entropy. Please go to the Wikipedia page for the multivariate Normal distribution
beforehand or, even better, read Chapter 4 of [10] and attempt the first few
exercises from [3].

14



Chapter 4

Maximum Likelihood

4.1 Outline

This lecture formulates the problem of linear prediction using probabilities. We
also introduce the maximum likelihood estimate and show that it coincides with
the least squares estimate.
The goal of the lecture is for you to understand:

• Gaussian distributions

• How to formulate the likelihood for linear regression

• Computing the maximum likelihood estimates for linear regression.

• Entropy and its relation to loss, probability and learning.

4.2 Univariate Gaussian Distribution

If x is sampled from a Normal (or Gaussian) distribution N with mean µ and
variance σ2 then we write

x ∼ N (µ, σ2)

The probability density function (PDF) (or histogram) of samples from a Gaussian
distribution with mean µ and variance σ2 is given by:

15



CHAPTER 4. MAXIMUM LIKELIHOOD

p(x) =
1√

2πσ2
e−

1
2σ2

(x−µ)2

which is a so called bell curve that looks like:

µ

σ

x

p
(x

)

Figure 4.1: The PDF of a Gaussian distribution, N (x;µ, σ2)

The PDF of a gaussian distribution has the property that:∫ ∞
−∞

p(x)dx = 1

and the area under the PDF curve in the region a ≤ x ≤ b gives the probability of
x being drawn from the interval [a, b]

If we accumulate the PDF of a gaussian using integration then we obtain the
Cumulative Density Function of the distribution, or CDF, as follows:

CDF(x) =

∫ x

−∞
p(t)dt

The CDF(x) is the probability that the distribution will produce a draw that is
less than or equal to x.
It is evident that CDF(−∞) = 0 and CDF(∞) = 1 and because p(x) is symmetric
about µ we also know that CDF(µ) = 1

2 . In fact the CDF of a Gaussian has a
sigmoid shape as shown in figure 4.2.
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The CDF of a distribution gives us a way to sample the distribution as follows.

• first generate a random number, r, in the range [0, 1].

• then compute r′ = CDF−1(r).

µ r′

0

0.5

1

U(0, 1)

r

x

C
D
F

(x
)

Figure 4.2: The CDF of a distribution gives us a way to sample the distribution using a
random number generator r′ = CDF−1(r).

4.3 Moments

To discuss moments of a distribution we need the concept of a Dirac delta
function, δ(x), which was introduced by Paul Dirac at the end of the 1920’s in
an effort to create the mathematical tools for the development of quantum field
theory. He referred to it as an improper function or functional. The usefulness
of the δ function is due to a property called the sampling property.
δ(x−a) can be thought of as a gaussian centred at point a with negligible variance
that has the following properties:

mass:
∫ ∞
−∞

δ(x− a)dx = 1 (4.1)

17
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sampling:
∫ ∞
−∞

f(x)δ(x− a)dx = f(a) (4.2)

The sampling property applies whenever f(x) is a function continuous in a neigh-
bourhood of a. Furthermore, If f(x) is any function with continuous derivatives
up to the nth order in some neighbourhood of a, then integration by parts gives us:

∫ ∞
−∞

f(x)δ(n)(x− a)dx = (−1)nf (n)(a) (4.3)

Here, δ(n) is the generalised nth order derivative of δ. This derivative defines a
functional, δ(n)(x − a), which assigns the value (−1)nf (n)(a) to f(x). You can
imagine these derivatives by considering derivatives of Gaussians as their variance
vanishes, see figure 4.3

µ

x

p(x)

p′(x)

p′′(x)

Figure 4.3: Derivatives of Gaussian distributions.

We can make use of δ functions to build an estimator for a PDF as shown in figure
4.4.
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µ

x

P
D
F

(x
)

Figure 4.4: Estimating a PDF using a number of δ functions.

If we have N samples, x(i), from our distribution then an estimate for it’s PDF is:

p(x) ≈ 1

N

N∑
i=1

δ(x− x(i)) (4.4)

which we will make use of to derive estimates for the so called moments of a PDF.

4.3.1 Expectation (first moment)

The first moment, or expectation, of a random variable, x with probability density
function, p(x), is defined by:

E(x) =

∫ ∞
−∞

xp(x)dx (4.5)

which using expression 4.4 can be estimated from N samples as:

E(x) ≈
∫ ∞
−∞

x
1

N

N∑
i=1

δ(x− x(i))dx

19



CHAPTER 4. MAXIMUM LIKELIHOOD

=
1

N

N∑
i=1

∫ ∞
−∞

xδ(x− x(i))dx

=
1

N

N∑
i=1

x(i) (4.6)

In the case of a gaussian distribution, the first moment evaluates exactly to the
parameter, µ. (prove this as an exercise)

4.3.2 Variance (second moment)

The second moment, or variance, of a random variable, x with probability density
function, p(x) and first moment, µ, is defined by:

Var(x) =

∫ ∞
−∞

(x− µ)2p(x)dx (4.7)

which again, using expression 4.4 can be estimated from N samples as:

Var(x) ≈
∫ ∞
−∞

(x− µ)2 1

N

N∑
i=1

δ(x− x(i))dx

=
1

N

N∑
i=1

∫ ∞
−∞

(x− µ)2δ(x− x(i))dx

=
1

N

N∑
i=1

(x(i) − µ)2 (4.8)

In the case of a gaussian distribution, the second moment evaluates exactly to the
parameter, σ2. (prove this as an exercise)

4.4 Covariance

The covariance between two random variables x and y measures the degree to
which x and y are linearly related:

Cov[x, y] = E[(x− E[x])(y− E[y])] = E[xy]− E[x]E[y] (4.9)
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If x is a d dimensional random vector then its covariance matrix is defined to be
the following symmetric positive definite matrix:

Cov[x] = E[(x− E[x])(x− E[x])T ]

=


Var[x1] Cov[x1,x2] Cov[x1,x3] . . . Cov[x1,xd]

Cov[x2,x1] Var[x2] Cov[x2,x3] . . . Cov[x2,xd]
...

...
...

. . .
...

Cov[xd,x1] Cov[xd,x2] Cov[xd,x3] . . . Var[xd]

 (4.10)

Using matrices we write the above as

Σ = Cov[X] (4.11)

4.5 Multivariate Gaussian

We are now in a position to write down the probability density function, p(x), for
a distribution x ∼ N (x;µ,Σ) over a d dimensional random vector x.

p(x) =
1√

(2π)d |Σ|
e−

1
2

(x−µ)TΣ−1(x−µ) (4.12)

When d = 2 the gaussian distribution could be as shown in figure 4.5.

0

0.1

Figure 4.5: A 2 dimensional Gaussian distribution
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4.6 Likelihood

Suppose we have drawn n data points from a Gaussian distribution with unknown
mean, θ and known variance, 1.

yi ∼ N (θ, 1) = θ +N (0, 1)

For example if n = 3 we might have drawn, {y1 = 1, y2 = 0.5, y3 = 1.5}.
The likelihood of our data for any θ is then given by the product:

P (y1|θ)P (y2|θ)P (y3|θ)

Now consider two guesses for the mean, θ = 1 or θ = 2.5. Which has the highest
likelihood, or probability of generating the three observations?

22



CHAPTER 4. MAXIMUM LIKELIHOOD

−1−0.5 0 0.5 1 1.5 2 2.5 3

P (y | θ = 1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P (y | θ = 2.5)

Figure 4.6: The θ that maximises the likelihood is found by shifting the gaussian.

Figure 4.6 demonstrates that finding the θ that maximises the likelihood is equiv-
alent to moving the Gaussian until the product of the 3 likelihoods is maximised.

4.7 Likelihood for linear regression

Let us assume that each label yi is Gaussian distributed with mean xTi θ and
variance σ2 which we can write as:
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yi ∼ N (xiθ, σ
2) = xiθ +N (0, σ2)

For any particular choice of parameters we can compute the likelihood of the data
using:

P (y|X,θ, σ) =

n∏
i=1

p(yi|xi,θ, σ)

=

n∏
i=1

1√
2πσ2

e
1

2σ2
(yi−xTi θ)2

= (
1√

2πσ2
)ne

1
2σ2

∑n
i=1(yi−xTi θ)2

= (
1√

2πσ2
)ne

1
2σ2

(y−Xθ)T (y−Xθ)

Themaximum likelihood estimate (MLE) of θ is found by taking the derivative
of the log-likelihood, log p(y,X,θ, σ) with respect to θ, setting the result to zero
and solving for θ.
The goal is to maximise the likelihood of seeing the training data, y, by modifying
the model parameters, θ and σ. However, instead of maximising the log-likelihood
we choose to minimise the negative of the log-likelihood which is given by:

− log(P (y|X,θ, σ)) =
n

2
log(2πσ2) +

1

2σ2
(y −Xθ)T (y −Xθ) (4.13)

Differentiating with respect to θ we obtain a gradient for a steepest descent
algorithm

∂

∂θ
[− log(P (y|X,θ, σ))] =

1

2σ2

∂

∂θ
(yTy − 2yTXθ + θTXTXθ)

=
1

2σ2
(−2XTy + 2XTXθ)

We could set this gradient to zero and solve for θ to find that the MLE for θ is
identical to the least square estimate:

θ = (XTX)−1XTy (4.14)
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The MLE for σ is obtained using:

∂

∂σ
[− log(P (y|X,θ, σ))] =

∂

∂σ
[
n

2
log(2πσ2) +

1

2σ2
(y −Xθ)T (y −Xθ)]

=
n

σ
− 1

σ3
(y −Xθ)T (y −Xθ)

Setting this expression to zero and solving for σ we find that

σ2 =
1

n
(y −Xθ)T (y −Xθ) =

1

n

n∑
i=1

(yi − xTi θ)2 (4.15)

as expected.
Having estimated the maximum likelihood parameters, θ and σ2, we can predict a
new output, ŷ from a new input, x∗ by sampling

ŷ ∼ N (y|xT∗ θ, σ2)

The one dimensional prediction procedure is shown in figure 4.7.

x∗

θ0

ŷ

slope = θ1

ŷ ∼ N (y |xT
∗ θ, σ

2)

model

σ

Figure 4.7: Predicting new output from a trained model.
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4.8 Entropy

In information theory, entropy H is a measure of the uncertainty associated with
a random variable, x. It is defined in terms of the probability distribution function
of the random variable as:

H(x) = −
∑
x

p(x|θ) log p(x|θ) (4.16)

Note that the log is usually taken in base 2 for an entropy measured in bits.

4.9 Entropy of a Bernoulli random variable

As an example, consider a Bernoulli discrete random variable, x, which takes
on discrete values from the set {0, 1} with a probability distribution function
dependent on a parameter, θ given by:

p(x|θ) = θx(1− θ)(1−x) =

{
θ if x = 1

1− θ if x = 0
(4.17)

In this case the entropy is given by:

H(θ) = −
∑

x∈{0,1}

θx(1− θ)(1−x) log(θx(1− θ)(1−x))

= −[(1− θ) log(1− θ) + θ log θ] (4.18)

and the dependence of entropy (or uncertainty) on the Bernoulli parameter θ is
shown in figure 4.8.
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0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

θ = p(x = 1)

H
(θ

)

Figure 4.8: Uncertainty in a biased dice with bias, θ.

As an exercise, show that the entropy of a Gaussian in d dimensions is given by:

H(N (µ,Σ)) =
1

2
log[(2πe)d|Σ|]

4.10 Kullback Leibler divergence

Theorem

For independent identically distributed data from p(x,θ0) the MLE minimises the
Kullback Leibler divergence between the real world with parameters θ0 and
the model with parameters θ.

Proof

θ̂ = arg max
θ

N∏
i=1

p(xi|θ)

= arg max
θ

N∑
i=1

log p(xi|θ)
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= arg max
θ

[
1

N

N∑
i=1

log p(xi|θ)− 1

N

N∑
i=1

log p(xi|θ0)

]

= arg max
θ

1

N

N∑
i=1

log
p(xi|θ)

p(xi|θ0)

= arg min
θ

1

N

N∑
i=1

log
p(xi|θ0)

p(xi|θ)

→ arg min
θ

∫
p(x|θ0) log

p(x|θ0)

p(x|θ)
dx as N →∞

= arg min
θ

[∫
p(x|θ0) log p(x|θ0)dx−

∫
p(x|θ0) log p(x|θ)dx

]

= arg min
θ

[(
information

from the world

)
−
(

information
from the model

)]

4.11 Entropy Notebook

in appendix A the reader will find a link to a Jupyter notebook that uses the Julia
language to explore some of the Entropy concepts discussed in this chapter.

4.12 Next Chapter

In the next chapter, we introduce ridge regression, bases functions and look at the
issue of controlling complexity.
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Chapter 5

Ridge Regression

5.1 Outline

This lecture will show how to fit nonlinear functions by using bases functions and
how to control model complexity. The goal is:

• Learn how to derive ridge regression.

• Understand the trade-off of fitting the data and regularising it.

• Learn polynomial regression.

• Understand that, if basis functions are given, the problem of learning the
parameters is still linear.

• Learn cross-validation.

• Understand model complexity and generalisation.

5.2 Regularisation

So far all our estimates for the parameters, θ, are of the form:

θ = (XTX)−1XTy

This requires the inversion of XTX which can lead to numerical problems if the
matrix is poorly conditioned. The solution is to add a small element to the
diagonal:
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θ = (XTX + δ2I)−1XTy

This is called the ridge regression estimate. It is the θ that minimises the
regularised quadratic cost function:

J(θ) = (y −Xθ)T (y −Xθ) + δ2θTθ (5.1)

since if we differentiate with respect to θ we obtain:

∂J(θ)

∂θ
=

∂

∂θ

(
θTXtXθ − 2yTXθ + yTy + δ2θTθ

)
= 2XTXθ − 2XTy + 2δ2Iθ

= 2(XTX + δ2I)θ − 2XTy

and on equating to zero we find:

θridge = (XTX + δ2I)−1XTy (5.2)

5.2.1 Geometric Interpretation

In figure 5.1 we give a geometric interpretation for the minimisation of the regu-
larised quadratic cost function of equation 5.1.
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θ2

θ1

θml

δ2 → 0

δ2 →∞

Figure 5.1: A geometric interpretation for a regulariser using the L2 norm.

The level curves of the quadratic cost are depicted in red whilst those of the
regulariser are shown in blue. The minimum quadratic cost subject to the restriction
θTθ = δ2 is found at the point where a quadratic cost level curve is tangential to
the regulariser’s level curve.
At δ = 0 there is no regularisation and the solution reverts to the least squares
optimum. As δ →∞ the regularisation becomes overbearing and θ → 0. The line
drawn in purple shows the path taken by the regulariser for differing values of δ
In effect we have recast the ridge regression problem as a constrained optimisation
problem employing the L2 norm for θTθ vis ‖θ‖22 =

∑
θ2
i .
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arg min
θ:θT θ≤δ2

(y −Xθ)T (y −Xθ) (5.3)

We can also regularise using an L1 norm, ‖θ‖1 =
∑ |θi|, in which case the

regularisation circles are replaced by regularisation squares as shown in figure 5.2.
This kind of regularisation is known as the lasso and as the red path shows it has
the effect of assigning zero weights to less important attributes as δ increases.

θ2

θ1

θml

δ2 → 0

δ2 →∞

Figure 5.2: A geometric interpretation for the lasso, which employs the L1 norm
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5.3 Ridge Regression via Bayes Rule

Bayes Rule allows us to obtain a maximum likelihood estimate for the model
parameters, θ. The rule is usually written as follows:

P (A|B) =
P (B|A)P (A)

P (B)

In our setting we can employ Bayes as follows:

P (θ|X,y) =
P (y|X,θ)P (θ)

P (y|X)

The term in the denominator is independent of θ. We could calculate it by
integrating over all possible models as P (y|X) =

∫
P (y|X,θ)P (θ)dθ. We see

that θ has been marginalised out so we can treat this term as a constant and then
try to find the θ that maximises the proportionality relation:

P (θ|X,y) ∝ P (y|X,θ)P (θ)

Now assuming that the data is normally distributed about the model predictions
with variance σ2 and that the model parameters come from a gaussian prior with
zero mean and variance τ2 we can use Bayes to write the likelihood for a model as:

P (θ|X,y) ∝
(
σ22π−

n
2 e−

1
2σ2

(y−Xθ)T (y−Xθ)
)
×
(
τ22π−

d
2 e−

1
2τ2

θT θ
)

= e−
1

2σ2
(y−Xθ)T (y−Xθ)− 1

2τ2
θT θ × σ22π−

n
2 × τ22π−

d
2

Given that we are looking to maximise this with respect to θ, we can ignore the
terms that don’t depend on θ and try to find:

arg max
θ

(
e−

1
2σ2

(y−Xθ)T (y−Xθ)− 1
2τ2

θT θ
)

max likelihood

= arg max
θ

(
− 1

2σ2
(y −Xθ)T (y −Xθ)− 1

2τ2
θTθ

)
max log-likelihood

= arg max
θ

−1

(
(y −Xθ)T (y −Xθ) +

2σ2

2τ2
θTθ

)
rearranging

= arg min
θ

(
(y −Xθ)T (y −Xθ) +

σ2

τ2
θTθ

)
max(f) = min(-f)
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which, if we set δ2 = σ2

τ2
, is equivalent to maximising the regularised cost, J(θ),

from equation 5.1. So, a lower variance on the prior for the weights, θ (i.e. a more
constrained prior) is equivalent to a higher δ2 value in the ridge regression solution.

5.4 Going non-linear using basis functions

We introduce basis functions, φ(x), to deal with nonlinearity. For example if
φ(x) = [1,x,x2] then y(x) = φ(x)θ + ε and we have a model that can fit a
parabola to data as shown in figurs 5.3.

0 2 4 6 8 10 12 14
−10

−5

0

5

10

ŷ = φ(x)θ

xi

y i

Figure 5.3: Basis functions for a parabolic fit

And finding the optimal model parameters reduces to linear regression with a
regularised solution:

θ = (φTφ+ δ2I)−1φTy

By introducing higher degree polynomial basis functions it is a simple matter to
adapt this procedure for higher dimensional models as shown in figure 5.4.
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Figure 5.4: Basis functions for a quadratic fits in higher dimensions, linear on the left and
quadratic on the right.

5.5 Kernel Regression

We can use so-called kernels as the basis vectors in our regression problem.
For example if the kernels are radial basis functions or RBFs then we have

φ(x) = [k(x,µ1, λ), . . . , k(x,µd, λ] where k(x,µi, λ) = e−
1
λ
‖x−µi‖2

with an example depected in figure 5.5.
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0 1 2 3 4 5 6

1 2 4

ŷ(x) = θ1e
−|x−1|2 + θ2e

−|x−2|2 + θ3e
−|x−4|2

x

y

Figure 5.5: Radial Basis Functions for kernel regression

In the example depicted in figure 5.5

φ(xi) = [1, k(xi, 1, λ), k(xi, 2, λ), k(xi, 4, λ)]

and Φ = φ(x) is an n by 4 matrix which, given the model parameters, θ, we can
use to predict output according to y = Φθ. Again we can obtain θ using least
squares or ridge regression via one of:

θls = (ΦTΦ)−1ΦTy

θridge = (ΦTΦ + δ2I)−1ΦTy

In the appendix, ??, we give a link to a Julia script for ridge regression using radial
basis functions as the kernels.
In figure 5.6 we show possible output of this script for three different settings for
the kernel width.
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Figure 5.6: RBF regression depends on kernel width, on the left the kernel width is too
small and we are overfitting and on the right the kernel width is too large.

The problem of choosing a suitable kernel width, λ, and regularisation parameter,
δ2 is partially solved through the use of cross validation.

5.6 Cross Validation

The idea of cross validation is simple. We split the training data into K folds;
then, for each fold k we train on all the folds but the kth, and test on the kth, in
a round-robin fashion. It is common to use K = 5; this is called 5-fold CV, see
figure 5.7.

Figure 5.7: 5-fold cross validation

We then average the prediction errors in the test folds and obtain a CV-error versus
the parameter we trying to optimise. For example if we were trying to optimise
the regularisation parameter we might plot logMSE as δ2 increases and then select
the δ2 that minimises the cross validation error, see figure 5.8.
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Figure 5.8: Cross Validation Mean Square Error as a function of log δ2.

5.7 Ridge Regression with Basis Functions Notebook

in appendix A the reader will find a link to a Jupyter notebook that uses the Julia
language and the Linear Algebra package to perform regularised ridge regression
by fitting a set of radial basis functions to non-linear data.

5.8 Next Chapter

In the next chapter, we delve into the world of optimisation. Please revise your
multivariable calculus and in particular the definition of gradient.
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Chapter 6

Optimisation

6.1 Outline

Many machine learning problems can be cast as optimisation problems. This
lecture introduces optimisation. The objective is for you to learn:

• The definitions of gradient and Hessian.

• The gradient descent algorithm.

• Newton’s algorithm.

• Stochastic gradient descent (SGD) for online learning.

• Popular variants, such as AdaGrad and Asynchronous SGD.

• Improvements such as momentum and Polyak averaging.

• How to apply all these algorithms to linear regression.

6.2 The Gradient and Hessian

A differentiable function f(θ) such that f : Rd → R has a vector field called the
gradient, ∇f(θ), at each point θ in Rd which is defined as follows:

∇f(θ) =

[
∂f

∂θ1
,
∂f

∂θ2
, . . . ,

∂f

∂θd

]T
(6.1)
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For example, in figure 6.1 we show the gradient vector field for a function f
mapping R2 to R.

Figure 6.1: The gradient vector field for f(x, y) = −((cosx)2 + (cos y)2)2 .

If f(θ) is twice differentiable in each of its variables then f : Rd → R has a tensor
field called the Hessian at each point θ in Rd , The Hessian is sometimes written
as the matrix, H, and sometimes as the gradient of the gradient, ∇2f(θ), and it
is defined as follows:

H = ∇2f(θ) =


∂2f
∂θ21

∂2f
∂θ1∂θ2

. . . ∂2f
∂θ1∂θd

∂2f
∂θ2∂θ1

∂2f
∂θ22

. . . ∂2f
∂θ2∂θd

...
...

. . .
...

∂2f
∂θd∂θ1

∂2f
∂θd∂θ2

. . . ∂2f
∂θ2d

 (6.2)

6.3 Multivariate Taylor expansion

Recall Taylor’s expansion for a function of one variable, θ, about some point, θk
say:
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f(θ) = f(θk) + (θ − θk)f ′(θk) +
(θ − θk)2

2!
f ′′(θk) + . . . (6.3)

The multivariate version of Taylor’s expansion reads:

f(θ) = f(θk) + (θ − θk)T∇f(θk) +
1

2!
(θ − θk)T∇2f(θk)(θ − θk) + . . .

= f(θk) + (θ − θk)Tgk +
1

2!
(θ − θk)THk(θ − θk) + . . . (6.4)

where we have abbreviated ∇f(θk) to gk and ∇2f(θk) to Hk.

6.4 Steepest Descent Algorithm

One of the simplest optimisation algorithms is called gradient descent or steepest
descent. In the minimisation of f(θ) we follow the path of steepest descent.
The algorithm for choosing the next θ is written as follows:

θk+1 = θk − ηkgk (6.5)

where k indexes steps of the algorithm and ηk > 0 is called the learning rate or
step size, see figure 6.2 which was taken from an excellent Nextjournal article by
Robert Luciani where he used Julia and Flux to animate steepest descent paths in
the loss landscape, see [9].
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Figure 6.2: A sequence of steps in Steepest Descent path in search of minimum loss, taken
from [9] .

6.5 Momentum

We can speed up steepest descent by including a momentum parameter that
weights the next update step with a term that depends on the previous update
step.

θk+1 = θk + α(θk − θk−1) + (1− α)[−ηkgk] (6.6)

where α is the momentum parameter with α = 0 for no momentum. Usually we
set α = 1

2 .
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6.6 Newton’s Method

Steepest Descent is a first order algorithm. We can speed up the process using a
second order process named after Newton where updates to θ are of the form:

θk+1 = θk −H−1
k gk (6.7)

To derive Newton’s method, 6.7, we differentiate the second order multivariate
Taylor expansion, 6.4, with respect to θ, treating θk as a constant, and we set the
result to zero because we expect zero gradient at an extremum. We then solve for
θ = θk+1 as follows:

0 = ∇f(θ) = 0 + gk +Hk(θ − θk)
=⇒ θ = θk+1 = θk −H−1

k gk (6.8)

6.7 Gradient Descent for Least Squares

When the function to be minimised is the least squares loss function, J(θ), the
gradient and Hessian can be computed algebraically:

J(θ) = (y −Xθ)T (y −Xθ)

gθ = ∇J(θ) = −2XTy + 2XTXθ

Hθ = ∇2J(θ) = 2XTX

(6.9)

and thus steepest descent reduces to

θk+1 = θk − ηk
[
−2XTy + 2XTXθk

]
(6.10)

whilst Newton’s method becomes:

θk+1 = θk −
(
2XTX

)−1 [−2XTy + 2XTXθk
]
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= (XTX)−1XTy (6.11)

and we see that in the least squares case, Newton’s method reduces to a one step
method that jumps immediately to the exact solution.

6.8 Newton CG algorithm

Rather than computing dk = H−1
k gk directly, we can solve the linear system of

equations Hkdk = gk for dk. One popular way to do this, especially if H is sparse,
is to use a conjugate gradient method to solve the linear system:

• initialise θ0

• for k = 0, 1, 2, . . . do

– evaluate gk = ∇f(θk)

– evaluate Hk = ∇2f(θk)

– solve Hkdk = gk for dk.

– use a line search to find best ηk along dk
– update θk+1 = θk + ηkdk

6.9 Stochastic Gradient Descent

As the name implies, Stochastic Gradient Descent, or SGD, is an update
method that uses n random samples of the data set to estimate the gradient for
the descent algorithm to follow.
The derivation of the method has its roots in a probability argument. We estimate
the gradient at θ using:

∇f(θ) =

∫
∇f(X,θ)P (X)dX

= E [∇f(X,θ)]

≈ 1

n

n∑
i=1

∇f(Xi,:,θ)

(6.12)
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and with this approximation to the gradient our update for steepest descent now
reads:

θk+1 = θk − ηk
1

n

n∑
i=1

∇f(Xi,:,θk) (6.13)

In the case of least squares where we are trying to optimise

J(θ) = (y −Xθ)T (y −Xθ)

with gradient
∇J(θ) = −2XTy + 2XTXθ

the SGD update for batch learning from n randomly chosen samples will read:

θk+1 = θk − ηk
1

n

n∑
i=1

XT
i,:(yi −X(i)θk) (6.14)

When n is small, n = 20 say, this is called mini-batch learning and if n = 1 it
is called online learning.

6.10 Adaptive Gradient Descent

Consider the standard steepest descent update:

θk+1 = θk − ηkgk (6.15)

Now the gradient, gk, is a vector with one component for each component of θk.
Each of these components have the same step size, η, in the evaluation of the
update.
In Adaptive Gradient Descent, or AdaGrad, we weight the ith component of
the gradient, g(i)

k ,as follows;

θ
(i)
k+1 = θ

(i)
k −

ηk√∑k
t=1(g

(i)
t )2 + ε

g
(i)
k (6.16)
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Here, ε is a smoothing term that avoids division by zero and the denominator gives
rise to a scaling factor for the learning rate that applies to a single parameter g(i).
Since the denominator in this scaling factor is the L2 norm of previous gradient
components, extreme parameter updates get dampened, while parameters that get
few or small updates receive higher learning rates.
One of AdaGrad’s main benefits is that it eliminates the need to manually tune
the learning rate. Most implementations use a default value of η = 0.01 and leave
it at that.
AdaGrad’s main weakness is its accumulation of the squared gradients in the
denominator: Since every added term is positive, the accumulated sum keeps
growing during training. This in turn causes the learning rate to shrink and
eventually become infinitesimally small, at which point the algorithm is no longer
able to acquire additional knowledge. There are many attempts in the literature
to produce algorithms that aim to resolve this flaw. Some include, Adadelta,
RMSprop, Adam, AdaMax, Nadam and AMSGrad.
The reader is referred to an online article by [14], where the different variants are
discussed and an animation of paths taken by the different optimisation scheemes
is produced, see a still from the animation in figure 6.3.

Figure 6.3: Paths taken by different adaptions of Steepest Descent.
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6.11 Batch Normalisation

Some of the ideas for this section come from a blog by Jeremy Jordan, see [8].
By normalising all of our inputs to a standard scale, we allow the network to more
quickly learn the optimal parameters for each node.
Additionally, it’s useful to ensure that our inputs are roughly in the range of −1
to 1 to avoid errors associated with floating point number precision. If your inputs
and target outputs are on a completely different scale than the typical −1 to 1
range, the default parameters for your neural network (ie. learning rates) will likely
be ill-suited for your data.
It is common practice to scale your data inputs to have zero mean and unit variance.
Normalising the input of your network is a well-established technique for improving
the convergence properties of a network.
Batch normalisation was proposed to extend the improved loss function topology
to more parameters of the network. By ensuring the activations of each layer are
normalised, we can simplify the overall loss function topology. This is especially
helpful for the hidden layers of our network, since the distribution of unnormalised
activations from previous layers will change as the network evolves and learns
more optimal parameters. By normalising each layer, we introduce a level of
orthogonality between layers - which generally makes for an easier learning process.
Given a vector of linear combinations from the previous layer zi for each observation
i in a dataset, we can calculate the mean and variance as:

µ =
1

m

∑
i

zi

σ2 =
1

m

∑
i

|zi − µ|2

Using these values, we can normalise the vectors zi as follows:

v̄zi =
zi − µ√
σ2 + ε

We add a very small number ε to prevent the chance of a divide by zero error.
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6.12 Stochastic Gradient Descent Notebook

in appendix A the reader will find a link to a Jupyter notebook that uses the Julia
language to perform stochastic gradient descent to find the optimum parameters
for minimising a quadratic loss function.

6.13 Next Chapter

In the next chapter, we apply these optimisation techniques to learn the parameters
of a neural network with a single neuron (logistic regression).
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Chapter 7

Logistic Regression

7.1 Outline

This lecture describes the construction of binary classifiers using a technique called
Logistic Regression. The objective is for you to learn:

• How to apply logistic regression to discriminate between two classes.

• How to formulate the logistic regression likelihood.

• How to derive the gradient and Hessian of logistic regression.

• How to incorporate the gradient vector and Hessian matrix into Newton’s
optimisation algorithm so as to come up with an algorithm for logistic
regression, which we call IRLS.

• How to do logistic regression with the softmax link.

7.2 McCulloch-Pitts Model of a Neuron

Figure 7.1 show how a Neuron is modelled as a network of two functional composi-
tions. The sum of weighted inputs is squashed to decide whether or not the neuron
output fires.
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Figure 7.1: The biological single neuron (top) with the McCulloch-Pitts model (bottom).

7.3 The Sigmoid squashing function

The squashing function, σ, for the McCulloch-Pitts neuron model is usually
implemented as a sigmoid function, also known as the logistic or logit
function. The sigmoid function maps the whole Real line onto the interval [0, 1] and
thus can be interpreted as producing a probability of whether the input belongs to
a particular class, see figure 7.2.
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Figure 7.2: The sigmoid squashing function, σ(Xiθ).

When the input isXiθ the squashing and hence the class assignment is accomplished
by evaluating:

σi = P (yi = 1|Xi,θ) = σ(Xiθ) =
1

1 + e−Xiθ
(7.1)

7.4 Separating Hyper-Plane

Consider two dimensional data points that are labeled in one of two classes,
{0 blue, 1 red}. With this setup, once we have learnt the parameters θ, equation
7.1 will yield a separating plane precisely when Xiθ = 0, see figure 7.3.
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Xiθ = 0

Figure 7.3: σ as a separator, σi = p(yi = 1|Xi,θ) = Π(Xiθ) = 1
2 when Xiθ = 0.

7.5 Negative Log-Likelihood

In order to learn θ we must define an objective function to optimise. To do this
we will assume that the distribution of yi ∈ {0, 1} behaves like a discrete Bernoulli
random variable given input πi. Thus for the full data set X we have using 4.17
that the likelihood is

p(y|X,θ) =
n∏
i=1

Ber(yi|πi)

=

n∏
i=1

πyii (1− πi)1−yi (7.2)

and we must optimise the negative log-likelihood (NLL) loss function which using
equation 4.18 now reads:

L (θ) = − log p(y|X,θ)

= −
n∑
i=1

yi log πi + (1− yi) log(1− πi) (7.3)
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7.6 Gradient and Hessian

The gradient and the Hessian of this loss function can be computed via:

g(θ) =
d

dθ
L (θ) =

n∑
i=1

yiX
T
i (πi − yi) = XT (π − y) (7.4)

H(θ) =
d

dθ
g(θ)T =

n∑
i=1

πi(1− πi)xixTi = XTSX (7.5)

where S is a d× d diagonal matrix with ith entry πi(1− πi)
Deriving equations 7.4 and 7.5 is mechanical and left to the reader as an exercise.

7.7 Steepest Descent

This time Newton’s method won’t yield a one-step method, because the loss
function is no longer quadratic, but we can still iterate downhill using Newton’s
method:

θk+1 = θk −H−1
k gk

= θk + (XTSkX)−1XT (y − πk)
= (XTSkX)−1[(XTSkX)θk +XT (y − πk)
= (XTSkX)−1XT [SkXθk + y + θk] (7.6)

7.8 SoftMax formulation

In figure 7.4 below, we show the so-called softmax formulation for logistic regres-
sion. Instead of feeding Xiθ though one sigmoid function, we maintain two sets
of parameters and feed, Xiθ1 and Xiθ2 to their own softmax function in order
to generate a probability for each of the two classes.
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Softmax

Xiθ1 Xiθ2

πi1 πi2

Figure 7.4: The softmax formulation for two classes which allows generalisation to more
than two classes .

πi1 =
eXiθ1

eXiθ1 + eXiθ2
= P (yi = 0|X,θ)

πi2 =
eXiθ2

eXiθ1 + eXiθ2
= P (yi = 1|X,θ)

7.9 Loss function for the softmax formulation

We compute a likelihood for the softmax formulation as follows

P (y|X,θ) =

n∏
i=1

π
Π0(yi)
i1 π

Π1(yi)
i2 (7.7)

where Πc(yi) is the indicator function that takes on the value 1 if yi = c and 0
otherwise.
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The loss function to optimise is then provided by the negative log likelihood thus:

L (θ) = − logP (y|X,θ) = −
n∑
i=1

Π0(yi) log πi1 + Π1(yi) log πi2 (7.8)

The expression log πic gives rise to the LogSoftMax layer as shown in figure 7.5.

L = z4

Negative
LogLikelihood

LogSoftMax
Layer

Linear
Layer

xi0 xi1 xi2 · · · xid

z4 = −∑i(Π0(yi)z
3
1 + Π1(yi)z

3
2)

z3
j = log πij(z

2)

z2
j = xi · θj

z3
1 = log πi1(z2

1 , z
2
2) z3

2 = log πi2(z2
1 , z

2
2)

z2
1 = θ1 · z1 z2

2 = θ2 · z1

z1 = xi

Figure 7.5: The neural network representation of loss due to a logsoftmax formulation.

To implement this network we must be able to compute an expression for the
gradient of the loss function. We can obtain an expression for the gradient due to
the differentiable nature of the logsoftmax function. For example to obtain the
gradient with respect to θ2 we note that:

∂

∂θ2
log πi1 = −Xiπi2

∂

∂θ2
log πi2 = Xi(1− πi2) (7.9)
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the proof of which is left as an exercise to the reader. Using equations 7.9 we can
obtain an expression for the gradient of the loss function with respect to θ2 say as
follows:

∂

∂θ2
L (θ) = −

n∑
i=1

Π0(yi)(−Xiπi2) + Π1(yi)Xi(1− πi2)

= −
n∑
i=1

(1− yi)(−Xiπi2) + yiXi(1− πi2)

which reduces to:

∂

∂θ2
L (θ) = −

n∑
i=1

Xi(yi − πi2) (7.10)

The equivalent expression for the gradient with respect to θ1 can be deduced from
the symmetry of the softmax formulation as:

∂

∂θ1
L (θ) = −

n∑
i=1

Xi(yi − πi1) (7.11)

and one can now see how to generalise the forward computation of the loss function
for logsoftmax network as well as the backward computation of the gradients with
respect to parameters for m > 2 classes.

L (θ) = −
n∑
i=1

m∑
j=1

Πj(yi) log πij

∂

∂θj
L (θ) = −

n∑
i=1

Xi(yi − πij) (7.12)

7.10 SoftMax Notebook

in appendix A the reader will find a link to a Jupyter notebook that uses the Julia
language together with the Flux package to introduce the softmax formulation that
allows us to build a three class classifier for images of fruit.
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7.11 Next Chapter

In the next chapter, we develop a layer-wise approach to computing all the necessary
derivatives known as back-propagation. This is the approach used in most deep
learning packages.
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Backpropagation

8.1 Outline

This lecture describes modular ways of formulating and learning distributed repre-
sentations of data. The objective is for you to learn:

• How to specify models such as logistic regression in layers.

• How to formulate layers and loss criterions.

• How well formulated local rules results in correct global rules.

• How back-propagation works.

• How this manifests itself in Torch.

8.2 A layered network

To demonstrate how back propagation is constructed we will use the example from
the previous lecture as was shown in figure 7.5.
In that example, the loss function L (θ) can be expressed as a function of the two
sets of parameters, θ1 and θ2, using functional composition:

L (θ) = z4
[
z3

1

[
z2

1(θ1, z
1), z2

2(θ2, z
1)
]
, z3

2

[
z2

1(θ1, z
1), z2

2(θ2, z
1)
]]

(8.1)
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Using this functional composition one can find the gradient of the loss function in
parameter space via the chain rule. For example:

∂L (θ)

∂θ1
=
∂z4

∂z3
1

∂z3
1

∂z2
1

∂z2
1

∂θ1
+
∂z4

∂z3
1

∂z3
1

∂z2
2

∂z2
2

∂θ1
+
∂z4

∂z3
2

∂z3
2

∂z2
1

∂z2
1

∂θ1
+
∂z4

∂z3
2

∂z3
2

∂z2
2

∂z2
2

∂θ1
(8.2)

and a similar expression can be written down for ∂L (θ)
∂θ2

. However, this decomposi-
tion of the gradient is not efficient as many of the partial derivatives are repeated.
Instead we turn to a layered representation for the network.

8.3 Layer Specification

In figure 8.1 we focus on the functional composition structure of forward/backward
propagation and outline a 3-brick representation of the neural network from figure
7.5 of the previous chapter.

Negative
LogLikelihood

LogSoftMax
Layer

Linear
Layer

L = z4 = f3(z3) δ4 = 1

z3 = f2(z2) δ3

z2 = f1(z1) δ2

z1 = x1 δ1

Figure 8.1: our example network consisting of 3 layers each consisting of one brick .

In figure 8.2 we give a brick schematic for a single layer that takes into account
any parameters involved in that layer.
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Layer
L

∂L

∂θL
θL

zL+1 δL+1

zL δL

Figure 8.2: A schematic for a single layer L with parameters θL.

In these diagram we have abbreviated the notation, zL and δL may have many
components. The forward pass through the network to evaluate the loss now reads:

zL+1
i = fL(zL) (8.3)

whilst the backward pass to evaluate the gradient reads

δLi =
∂L

∂zLi
=
∑
j

∂L

∂zL+1
j

∂zL+1
j

∂zLi
=
∑
j

δL+1
j

∂zL+1
j

∂zLi

∂L

∂θL
=
∑
j

∂L

∂zL+1
j

∂zL+1
j

∂θL
=
∑
j

δL+1
j

∂zL+1
j

∂θLi
(8.4)

Note that the brick by brick algorithm delivers the expected gradient for the full
network, for example:

∂L (θ)

∂θ1
=

2∑
j=1

∂L

∂z2
j

∂z2
j

∂θ1

=
2∑
j=1

(
2∑

k=1

∂L

∂z3
k

∂z3
k

∂z2
j

)
∂z2

j

∂θ1

=

2∑
j=1

(
2∑

k=1

(
1∑
l=1

∂L

∂z4
l

∂z4
l

∂z3
k

)
∂z3

k

∂z2
j

)
∂z2

j

∂θ1

=
2∑
j=1

2∑
k=1

1
∂z4

∂z3
k

∂z3
k

∂z2
j

∂z2
j

∂θ1
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= same expression as before
(8.5)

8.4 Reverse Differentiation and why it works

On the forward pass loss output from the network is a nested composition of
functions from each layer:

Loss = L = fL(fL−1(. . .f2(f1(x)) . . .))

where we have bundled θ in with x to shorten the notation.
Now we could choose to evaluate the gradient of the loss function with respect to
the parameters as follows

∂fL(fL−1(. . .f2(f1(x)) . . .))

∂x
=

∂fL

∂fL−1

∂fL−1

∂fL−2
. . .

∂f2

∂f1

∂f1

∂x

However the expression on the right hand side requires storage for L− 1 matrices
and one vector which could be prohibitive if there are many parameters. Instead
we accumulate the gradient on the backward pass by evaluating it in a nested
fashion as shown below

∂fL(fL−1(. . .f2(f1(x)) . . .))

∂x
=

(((
. . .

(
∂fL

∂fL−1

∂fL−1

∂fL−2

)
. . .

)
∂f2

∂f1

)
∂f1

∂x

)
This nested computation only requires storage for one vector and one matrix at a
time.

8.5 Deep Learning layered representation

We can now generalise our layered representation for a complete network consisting
of L layers with the last layer being a loss layer as shown in figure 8.3
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loss (layer L)

zL+1scalar loss L = δL+1 = ∂L
∂zL+1 = 1

layer L − 1

layer l

layer l − 1

layer 1

z1input x = δ1 = ∂L
∂z1

= ∂L
∂x

θl

θl−1

∂L
∂θl

∂L
∂θl−1

θ

∂L

∂θ

prediction zL δL = ∂L
∂zL

zl δl = ∂L
∂zl

Figure 8.3: Deep Learning back propagation.

We emphasise the nested layered structure by enclosing the whole network using a
single layer schematic. Consider a single layer as shown in the schematic figure 8.4.
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f

zlayer output δl+1 derivative of loss wrt layer’s output, ∂L
∂z

xlayer input δl derivative of loss wrt layer’s input, ∂L
∂x

θ layer parameters

∂L

∂θ
derivative of loss wrt layer’s parameters

Figure 8.4: Schematic for a single layer of deep learning back propagation.

To implement such a layer we must implement 3 computations:

zj = fj(x,θj)

δli =
∑
j

δl+1
j

∂fj(x;θj)

∂xi
(8.6)

∂L

∂θij
=
∑
j

δl+1
j

∂fj(x;θj)

∂θij

where i is an index running over the input to the layer and j is an index running
over the output.
The vector valued function, f , has components j that are each multivariate
functions of inputs i. Each connection from input to output may involve a
learnable parameter θij
In what follows we will construct units with associated layer equations for each
of the networks we have seen thus far.
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8.6 Example Layer Implementation

8.6.1 Linear units

For the linear layer, we have fj(x,θj) =
∑

i xiθij , and thus the layer equations
8.6 for a linear layer are implemented as

zj = fj(x,θj) =
∑
i

xiθij

δli =
∑
j

δl+1
j

∂fj(x;θj)

∂xi
=
∑
j

δl+1
j θij (8.7)

∂L

∂θij
=
∑
j

δl+1
j

∂fj(x;θj)

∂θij
= δl+1

j xi

8.6.2 Squashing units

For a sigmoid layer z = 1
1+e−x , or a tanh layer z = ex−e−x

ex+e−x , with the number of
outputs equal to the number of inputs, each output is computed as a sigmoid of
the corresponding input. There are no parameters and we only need one index.

sigmoid tanh

zj =
1

1 + e−xj
zj =

exj − e−xj
exj + e−xj

δli = δl+1
i zi(1− zi) δli = δl+1

i (1− z2
i ) (8.8)

As an exercise, try to derive the back propagation gradient updates presented in
equations 8.8.

8.6.3 Rectified Linear Unit

In the 1980’s Prof. Fukushima from Japan introduced the Rectified Linear Unit
(or ReLU) as a simple alternative to the sigmoid function, see figure 8.5
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0

0

x

z

Figure 8.5: The Rectified linear unit, z(x) = max(0, x).

The ReLU can be implemented as follows:

relu
zj = max(0, xj)

δli = δl+1
i Π(xi > 0) (8.9)

In the 1980’s ReLUs were seldom used because networks were shallow but they
have become popular again with the advent of deep learning.

8.6.4 SoftMax unit

The layer equations for a SoftMax unit, zj = exj∑
i e
xi
, are more difficult to derive.

Although there are no parameters and we again have as many outputs as there are
inputs, this time each output depends on all the inputs.

softmax

zj =
exj∑
i e
xi

δli = zi

(
δl+1
i − (z · δL+1)

)
(8.10)
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As an exercise, try to derive the back propagation gradient updates for the softmax
layer as presented in equation 8.10.

8.7 Layered Network Notebook

in appendix A the reader will find a link to a Jupyter notebook that uses the Julia
language together with the Flux package to introduce the layered structure of Flux
models that provide the user with forward function evaluations back-propagation
of gradients so that parameters for the model may be learnt via gradient descent.
As an example a digit recogniser is built for the MNIST digit dataset.

8.8 Next Chapter

In the next chapter, we will look at a successful type of neural network that is
very popular in speech and object recognition, known as a convolutional neural
network.
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Chapter 9

Convolutional Neural Networks

9.1 Outline

This lecture introduces you to convolutional neural networks. These models have
revolutionised speech and object recognition. The goal is for you to learn

• Convnets for object recognition and language

• How to design convolutional layers

• How to design pooling layers

• How to build convnets in torch

9.2 A Convolutional Neural Network

Before defining the convolution operation we start by outlining the architecture
for a convolutional neural network as shown in figure 9.1.
In the ConvNet model, we start with a convolution layer where the input data
are images, two dimensional arrays of pixels, and the parameters for the layer are
filters, small two dimensional arrays.
The network also employs pooling layers where the image data is sub-sampled
so as to reduce the number of pixels in the data.
After a series of convolutions followed by pooling the data is passed to a Multi
Layer Perceptron for final classification.
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Figure 9.1: A convolutional neural net for labeled images, the architecture is from [15].

9.3 Correlation and Convolution

Given a 1D signal, x, we can correlate it with a smaller filter, w, of odd length
indexed by −k ≤ j ≤ k by computing a new signal z as follows

zi =

k∑
j=−k

xi+jwj (9.1)

which we write using vector notation as

z = x⊗w (9.2)

There are issues at the boundary of the input signal, x, but they can be resolved
using zero padding. Correlation can be thought of as a matching operation.
When the input signal matches the filter then the output signal is high.
Convolution is similar to correlation except that we flip the filter about its
midpoint before computing the output. So for convolution, if w = flip(w), we
compute:

zi =
k∑

j=−k
xi+jw−j =

k∑
j=−k

xi+jwj (9.3)

which we can write using vector notation as
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z = x⊗w (9.4)

Note that when the filter is symmetric about its mid-point, convolution and
correlation are identical.

9.4 Two dimensions

Convolution can be carried out in more than one dimension. In two dimensions
the input and output signals are images and the filters are small two dimensional
arrays with a central element. The flip operation is carried out in both dimensions.
and the convolution operation becomes:

Zij =
K∑

k1=−K

K∑
k2=−K

Xi+k1,j+k2W k1,k2 (9.5)

which we write using matrix notation as

Z = X ⊗W (9.6)

We can think of convolution as the sliding of the flipped filter over the input image
and at each pixel in the input image taking the dot product of the filter with that
piece of the input image currently under the sliding filter. The process is depicted
in figure 9.2.
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Figure 9.2: The convolution operation.

9.5 Three dimensions

Input to a convolutional layer of a ConvNet are usually not images but volumes
For example an RBG image can be thought of as a 3 dimensional volume with
with width, W , height, H, and depth, 3. The first layer of the network might
perform convolutions with say F different filters that are also volumes each of size
K ×K × 3 The depth of the filters is the same as the depth of the input volume.
The filters are translated over the input volume in the width and height dimensions
and 3-dimensional dot products are computed in the overlap region to end up with
a W ×H output image per filter. So we end up with a W ×H ×F output volume,
see figure 9.3 for a pictorial representation.
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Figure 9.3: The convolution operation for volumes.

Sometimes designers include a stride peramater which allows the filters to skip
positions as they translate. The default is a stride of 1. Anything higher decreases
the size of the output volume by a factor of stride2.
To summarise, the Convolutional Layer:

• Accepts a volume of size W1 ×H1 ×D1

• Requires four hyper-parameters:

Number of filters F ,
their spatial extent K,
the stride S,
the amount of zero padding P .

• Produces a volume of size W2 ×H2 ×D2 where:

W2 = (W1 −K + 2P )/S + 1

H2 = (H1 −K + 2P )/S + 1

D2 = F

• With parameter sharing we introduce K ×K ×D1 new parameters per
filter, for a total of K×K×D1×F parameters and F biases per convolution
layer.

• In the output volume, the dth depth slice (of size W2 ×H2) is the result of
performing a convolution of the dth filter over the input volume with a stride
of S, and then offset by the dth bias.
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9.6 Backpropagation

To complete the convolutional layer it remains to back propagate the gradients.
Now the input is an image volume, Xijd, and the parameters are filter volumes,
Θijdf . The output is an image volume, Zijf .
The gradient is back propagated as a four dimensional array, δijdf , one gradient
coefficient for each filter parameter. It turns out that the three layer equations all
reduce to convolutions as follows:

Z = X ⊗Θ

δl = Θ⊗ δl+1 (9.7)
∂E

∂Θ
= X ⊗ δl+1

A complete derivation of this result can be found in [16].

9.7 Implementation via matrix multiplication

The convolution operation essentially performs dot products between the filters and
local regions of the input. A common implementation pattern of the ConvNet layer
is to take advantage of this fact and formulate the forward pass of a convolutional
layer as one big matrix multiply as follows:
The local regions in the input image are stretched out into columns in an operation
commonly called im2col. For example, if the input is 227× 227× 3 and it is to
be convolved with 11× 11× 3 filters at stride 4, then we would take 11× 11× 3
blocks of pixels in the input and stretch each block into a column vector of size
11× 11× 3 = 363.
Iterating this process in the input at stride of 4 gives (227−11)/4+1 = 55 locations
along both width and height, leading to an output matrix Xcol of im2col of size
[363 x 3025], where every column is a stretched out receptive field and there are
55× 55 = 3025 of them in total. Note that since the receptive fields overlap, every
number in the input volume may be duplicated in multiple distinct columns.
The weights of the ConvNet layer are similarly stretched out into rows. For example,
if there are 96 filters of size 11 × 11 × 3 this would give a matrix Trow of size
96× 363.
The result of a convolution is now equivalent to performing one large matrix
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multiply Trow * Xcol, which evaluates the dot product between every filter and
every receptive field location. In our example, the output of this operation would
be 96× 3025, giving the output of the dot product of each filter at each location.
The result must finally be reshaped back to its proper output dimension 55×55×96.
This approach has the downside that it can use a lot of memory, since some values
in the input volume are replicated multiple times in Xcol. However, the benefit
is that there are many very efficient implementations of Matrix Multiplication
that we can take advantage of. Moreover, the same im2col idea can be reused to
perform the pooling operation, which we discuss next.

9.8 Non-Linearity

It is common for convolutional layers to pass their output through a non-linear
squashing function before the data reaches the next convolutional layer. Common
choices are, tanh and relu units. These non-linear units do not have parameters
but do affect the back-propagated gradients, see chapter 8.

9.9 maxPooling Layer

It is common to periodically insert a maxPooling layer in-between successive
convolutional layers in a ConvNet architecture. Its function is to progressively
reduce the spatial size of the representation to reduce the number of parameters in
the network, and hence to also control overfitting.
The maxPooling Layer operates independently on every depth slice of the input
and resizes it spatially, using the max operation. The most common form is a
pooling layer with filters of size 2× 2 applied with a stride of 2 down-samples every
depth slice in the input by 2 along both width and height, discarding 75% of the
activations. Every max operation would in this case be taking a maximum over
4 numbers (little 2x2 region in some depth slice). The depth dimension remains
unchanged.
In summary, the pooling layer:

• Accepts a volume of size W1 ×H1 ×D1

• Requires two hyper-parameters:

the spatial extent, K, of the pool
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the stride S

• Produces a volume of size W2 ×H2 ×D2 where:

W2 = (W1 −K)/S + 1

H2 = (H1 −K)/S + 1

D2 = D1

• Introduces zero new parameters since it computes a fixed function of the
input

It is worth noting that there are only two commonly seen variations of the max-
Pooling layer found in practice: A pooling layer with K = 3 and S = 2 (also
called overlapping pooling), and more commonly K = 2 and S = 2, see figure 9.4.
Pooling sizes with larger receptive fields are too destructive.

Figure 9.4: The pooling operation to down-sample the images.

9.10 Fully-Connected layer

Finally, after several convolutional and maxPooling layers, the high-level reasoning
in the neural network is done via a fully connected layer. A fully connected
layer takes all neurons in the previous layer (be it fully connected, pooling, or
convolutional) and connects it to every single neuron it has. Fully connected layers
are not spatially located anymore (you can visualise them as one-dimensional),
so there can be no convolutional layers after a fully connected layer. Usually the
last layer has one neuron for each class we are hoping to learn and softMax is
implemented.
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9.11 Convolutional Neural Network Notebook

in appendix A the reader will find a link to a Jupyter notebook that uses the Julia
language together with the Flux package to build a digit recogniser for the MNIST
dataset adain, this time using a Convolutional Neural Network.
The ConvNet consists of three rounds of conv plus maxPool layers, followed by
a fully connected dense linear layer to a 10 class softMax layer.

9.12 Next Chapter

In the next chapter, we will look at Recurrent Neural Networks and how to overcome
the vanishing gradient problem through the introduction of the Long Short Term
Memory unit.
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Chapter 10

Recurrent Neural Networks

10.1 Credits

For this chapter we break from Nando de Freitas lecture video series and follow
the Justin Johnson lecture on RNNs from the Stanford Engineering course, In
particular, lecture 10 of 2017, [7].
Material for the section on LSTMs has also been sourced from an article by
Christopher Olah, see [13].

10.2 Recurrent Networks

A recurrent neural network (RNN) is a class of artificial neural network where
connections between units form a directed cycle. This creates an internal state
of the network which allows it to exhibit dynamic temporal behaviour. Unlike
feedforward neural networks, RNNs can use their internal memory to process
arbitrary sequences of inputs. This makes them applicable to tasks such as
handwriting recognition or speech recognition.
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A

ht

xt

Figure 10.1: Recurrent Neural Network

In figure 10.1, a chunk of neural network looks at some input x and outputs a
vector y. A loop allows information to be passed from one step of the network to
the next.

10.3 Unrolling the recurrence

A recurrent neural network can be thought of as multiple copies of the same
network, each passing a message to a successor. Consider what happens if we
unroll the loop:

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 10.2: Unrolling the RNN as a list of hidden layers.

We can not have RNNs of enormous length because we have to store in memory
the hidden state at each time step to be able to back-propagate.
The same function and the same set of parameters are used at very time step!
The parameters may be in two parts, one part applies to the previous state and
the other to the current input. For example we could have a recursive linear part
feeding a squashing function to produce output:
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ht = tanh(Θhht−1 + Θxxt + b)

yt = Θyht (10.1)

Note that here we use parameter matrices:

If ht−1 has n elements and xt has m elements then

Θh is n× n and Θx is n×m and b is n× 1

and after passing through the activation function, ht again has n elements.

also Θy would be m× n so that input to the next layer has m elements.

Normally we will have RNNs of max length. To process bigger sequences we could
divide the sequence in chunks of max length and the last hidden state of a chunk
is the initial hidden state of the next chunk.
Many flavours are possible, one to many, many to many etc. We can also stack
RNNs together to produce a deeper RNN. It still works the same as before but
now we have a weight matrix for each row of hidden layers.

10.4 Vanishing Gradient problem

Traditional activation functions such as tanh have gradients in the range (0, 1),
and backpropagation computes gradients by the chain rule. With an RNN with
long memory this has the effect of multiplying many of these small numbers
together to compute gradients over time. This meaning that the gradient decreases
exponentially with length of recall.
Mathematically the problem arises because

∂Et
∂Θh

=
∂Et
∂yt

∂yt
∂ht

∂ht
∂ht−1

∂ht−1

∂ht−2
. . .

∂h1

∂h0

∂h0

∂Θh

=
∂Et
∂yt

∂yt
∂ht

(
t−1∏
i=0

∂hi+1

∂hi

)
∂h0

∂Θh

=
∂Et
∂yt

∂yt
∂ht

(
t−1∏
i=0

ΘT ηi

)
∂h0

∂Θh
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≤ const × ηt ( since each ηi is a derivative of tanh and hence < 1) .
(10.2)

which is very small if η < 1 and t is large. Note that it does not help to replace
the tanh activation function with one that has derivatives greater than 1 since
then we end up with an exploding gradient problem.
The solution is provided by the so called Long Short Term Memory unit which
we describe in the next section.

10.5 Long Short Term Memory

Normally we will not use Vanilla RNNs, instead, current researchers use Long
Short Term Memory units or LSTMs. They are similar to RNNs in that they
still take into account the input and the last state but now we store two vectors at
each time step, the hidden state, ht and a so called cell state, ct.
Moreover in a vanilla RNN the repeating module only has one layer with a tanh
activation function. whereas with LSTM we have four interacting layers with
sigmoid and tanh activations, see figure 10.3.

σ

ft

σ

it

Tanh

c̃t

σ

ot

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

ht

yt

Figure 10.3: LSTM cell

The key to LSTMs is the cell state, ct, the horizontal line running through the
top of the diagram. The cell state is kind of like a conveyor belt. It runs straight
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down the entire chain, with only some minor linear interactions. It’s very easy for
information to just flow along it unchanged. This cell state, ct, is used to decide
which elements of the hidden state to update for output to the next unit.
The LSTM has the ability to remove or add information to the cell state, carefully
regulated by structures called gates.
Think of gates as boolean variables. As a result of a sigmoid they become differen-
tiable. They allow us to reset and add to the cell state, as well as to choose what
elements in the hidden state should be updated. If the cell state was an array of
counters we would want to do two operations on them:

• reset them with ft

• add -1 or 1 with it � c̃t

Once the counters were modified we would want to use some of them them to
update the hidden state:

• output ht = ot � tanh(ct)

Step by step

First Decide what information we’re going to throw away from the cell state.
This decision is made by a sigmoid layer called the forget gate layer. It looks at
ht−1 and xt, and outputs a number between 0 and 1 for each number in the cell
state ct−1.

ft = σ(Θf · [ht−1,xt] + bf )

In the forget gate a 1 means completely keep this while a 0 means completely get
rid of this.

Second Decide what new information we’re going to store in the cell state. This
has two parts. First, a sigmoid layer called the input gate layer decides which
values we’ll update. Next, a tanh layer creates a vector of new candidate values,
c̃t, that could be added to the cell state.

it = σ(Θi · [ht−1,xt] + bi)

c̃t = tanh(Θc · [ht−1,xt] + bc)
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Third Update the old cell state, ct−1, into the new cell state ct. The previous
steps already decided what to do, we just need to actually do it. We multiply the
old state by ft, forgetting the things we decided to forget earlier. Then we add
it � c̃t. These are the new candidate values, scaled by how much we decided to
update each state value.

ct = ft � ct−1 + it � c̃t

Fourth Finally, we decide what we’re going to output. This output gate will
be based on our cell state, but will be a filtered version. First, we run a sigmoid
layer which decides what parts of the hidden state we’re going to output. Then,
we put the cell state through tanh (to push the values to be between −1 and 1)
and multiply it by the output of the sigmoid gate.

ot = σ(Θo · [ht−1,xt] + bo)

ht = ot � tanh(ct)

10.6 Variants on LSTMs

Not all LSTMs are the same as the above. In fact, it seems like almost every paper
involving LSTMs uses a slightly different version. The differences are minor, but
it’s worth mentioning some of them. Greff, et al. (2015) do a nice comparison of
popular variants, finding that they’re all about the same.
For a good alternate discussion of RNNs and LTSMs see https://goo.gl/XodLUU.

10.7 The Language Model

To support the Stanford course, Justin Johnson has written a Torch code called
LanguageModel that he has made available via is github account.
This code can learn style from a text source and then produce more text in the
same style. The code has implementations of both VanillaRNN and LSTM and
one or the other can be chosen via a command line parameter.
The code comes with a sample text, tiny-shakespeare.txt, which is used
as training data and after training can be sampled to produce Shakespearish like
prose.
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To test the code, we trained a similar model on some Latin poetry by the Roman
poet, Gaius Valerius Catullus 54BC. Here is one of his poems, the ninth,

IX. ad Veranium

Verani, omnibus e meis amicis
antistans mihi milibus trecentis,
venistine domum ad tuos penates
fratresque unanimos anumque matrem?
venisti. o mihi nuntii beati!
visam te incolumem audiamque Hiberum
narrantem loca, facta nationes,
ut mos est tuus, applicansque collum
iucundum os oculosque suaviabor.
o quantum est hominum beatiorum,
quid me laetius est beatiusve?

After training for about two hours, samples of poetry such as the one below could
be generated.

LXV. ad Remaeantem

olim aventem ad nihil solet patrium
Quod habet tuum sinire properippora?
ut reddedut gemina perpulacrimis in ventes
medio curo fladi, nec talicos domenia mente coetus
taliunt parditum fugiore aut tarem.
haec corocum subtegminas labore patere,
verum an faciat memores amore.
quos si sua die fuigore quereate monti,
non hoc iter issores malum languentem et Augasiati.
dantis irrumanti amore.

10.8 LSTM Notebook

in appendix A the reader will find a link to a Jupyter notebook that uses the Julia
language together with the Flux package to build a character based LSTM that
learns how to generate Latin poetry.
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10.9 Next Chapter

In the next chapter, we will look at Auto Encoders.
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Auto-Encoders

11.1 Outline

This chapter introduces you to auto-encoding networks. This chapter is heavily
influenced by a series of articles from Irhum Shafkat on auto-encoders published
in [1].
The strategy behind an auto-encoder is to choke the network to a low dimensional
space and then expand it again using inverse layers and finally use the input data
to compute an MSE loss according to

LMSE = |X − X̂| (11.1)

and thus force the network to learn a low dimensional representation of its input.
This low dimensional representation is often called the latent space of the network.

11.2 The Simple Autoencoder

An auto-encoder consists of 2 components: encoder and decoder. The encoder
compresses the input and produces the code, the decoder then reconstructs the
input only using this code. See figure 11.1 below.
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Figure 11.1: A simple auto-encoder for MINST data.

After training the auto-encoder we can feed in sample data into the encoder to be
compressed into a two dimensional code and then we can observe what emerges
from the decoder.
In fact it is now possible to sample from latent space directly and see how a position
in latent space decodes to an output image. In figure 11.2 below we see 10 samples
taken from the latent space class centroids of the MNIST training data.

Figure 11.2: MNIST decoding from latent space samples

As can be seen the representations of hand drawn, 2, 4 and 5 digits is poor. This
is due to the overlap of classes in latent space.
The fundamental problem with this simple auto-encoder is that there is no control
of the latent space positioning of the code. Sample classes are smeared across the
2D plane and do not allow easy classification.
For example, if the class centroids of the training data in latent space are used
to classify new data according to nearest centroid in latent space then we do not
achieve much better than a 50% accuracy level.
The reason is that classes overlap and do not bunch in latent space, see figure 11.3
below for the positions of the MNIST training samples in latent space.
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Figure 11.3: 2D latent space for the simple auto-encoder on 5000 MNIST training samples,
training accuracy = 55%, testing accuracy = 53%.

In the next section the Variational Auto-Encoder is introduced in an attempt to
control the positioning of the code in latent space.

11.3 The Variational Auto-Encoder

Variational auto-encoders attempt to control the position of the code in latent
space and overcome the non-contiguous latent space problem by introducing an
extra part to the code layer.
The VAE achieves this by making its encoder not a single vector of size n, but
rather, two vectors of size n: a vector of means, µ, and another vector encoding a
diagonal covariavce matrix, Σ.
These two vectors form the parameters for a gaussian representation of the input
from which we sample to obtain an encoding which we pass onward to the decoder.
This stochastic generation means, that even for the same input, while the mean
and standard deviations remain the same, the actual encoding will vary on every
pass simply due to sampling.
To prevent the fragmentation of the model’s latent space the loss function of the
VAE is commonly augmented with an extra term that encourages samples to
cluster near the origin. This is achieved using a measure for gaussian distributions
known as Kullback-Leibler (KL) divergence.
Given two multivariate Gaussian distributions, p(x) = N (µp,Σp) and q(x) =
N (µq,Σq) the KL divergence between them can be derived as
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KL(p, q) = −
∫
p(x) log

[
p(x)

q(x)

]
=

1

2

{
log

det(Σq)

det(Σp)
− d+ Tr(Σ−1

q Σp) + (µp − µq)TΣ−1
q (µp − µq)

}
(11.2)

A derivation of this result is often set as an exercise to the reader, see [4] for a
solution.
To encourage clustering around the origin q(x) is fixed at N (0, I) and p(x) is the
encoding of the sample as N (µ,Σ). Then it turns out that when the encoding is

of dimension d = 2 with µ = [µ1, µ2] and Σ =

[
Σ11 0
0 Σ22

]
then the contribution

to the loss of a KL term for each sample reduces to

LKL =
1

2

{
− log(Σ11Σ22)− 2 + Σ11 + Σ22 + µ2

1 + µ2
2

}
(11.3)

The total loss over a batch is then computed as the sum of the KL loss and the
MSE loss. The improved design for a variational auto-encoder is shown in figure
11.4 below.

28

28

input
img

78
4

X

51
2

ec1

64

ec2

16

ec3

2

2

µ Σ

16

dc4

64

dc3

51
2

dc2

78
4

X̂

L

(X − X̂)2 − log(Σ11Σ22) + Σ11 + Σ22 + µ2
1 + µ2

2 − 2

Figure 11.4: A variational auto-encoder for MINST data.

Input samples are now grouped near the origin in latent space, see figure 11.5
below
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Figure 11.5: The 2D latent space of a variational auto-encoder for 5000 MINST training
samples, training accuracy = 56%, testing accuracy = 55%..

The Variational Auto-Encoder still suffers from class overlap in latent space. In
the next section we introduce semi-supervision to overcome the overlap problem.

11.4 A Semi-Supervised Variational Auto-Encoder

If class labels for samples are available then we can supervise the auto-encoder by
encouraging samples to cluster near class means in latent space. To do this we first
run a variational auto-encoder on training data without considering the training
labels and then we compute class means in latent space and then continue running
the auto-encoder but this time encourage samples of the same class to cluster near
the current class means.
To do this we now choose µq = c, the current class centroid for the sample and
our KL contribution to the loss now becomes

LKL =
1

2

{
− log(Σ11Σ22)− 2 + Σ11 + Σ22 + (µ1 − c1)2 + (µ2 − c2)2

}
(11.4)

After each epoch we recompute the class centroids. We then centre them about
the origin and we also include a drift term to force some separation between them.
In figure 11.6 below we show the resulting latent space for a semi-supervised
variational auto-encoder on a training set comprising half the MNIST data set.
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Figure 11.6: The 2D latent space of a semi-supervised variational auto-encoder for 5000
MINST training samples, training accuracy = 99.9%.

The reader can view an animation of the clustering in latent space as learning
progresses by visiting [11].
Whenever training occurs in machine learning we must also check the performance
of the model on holdout test data. In figure 11.7 below we show clustering of
MNIST holdout test data near the class centroids evolved from the training data.

Figure 11.7: The 2D latent space of a semi-supervised variational auto-encoder for 5000
MINST test samples, testing accuracy = 90%.

This semi-supervised model now provides the practitioner with a means of sampling
hand drawn digits of any class. Given a class to sample we choose a point near
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the class centroid in latent space and then pass that point through the decoder to
produce a sample image. Samples for each of the ten classes are shown in figure
11.8 below.

Figure 11.8: Sample digits drawn from near class centroids in latent space.

We can also generate new MNIST examples by sampling anywhere in latent space
and passing the sample to the decoder. Results are shown in the grid in figure 11.9

Figure 11.9: Encoding of samples from across the SS-VAE’s latent space.

11.5 Autoencoder Notebooks

in appendix A the reader will find a link to a Jupyter notebook that uses the Julia
language together with the Flux package to implement the auto-encoders described
in this chapter.
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Appendix A

Julia with Flux

The following Jupyter notebooks have been placed on the NextJournal computing
platform at https://nextjournal.com/DeepLearningNotes.
The reader is encouraged to register a free account with NextJournal to enable the
remixing and experimentation with these notebooks.

• Chapter 1: Introduction to the Julia programming language
https://nextjournal.com/DeepLearningNotes/Ch01IntroductionToJulia

• Chapter 2: Linear Algebra with Julia
https://nextjournal.com/DeepLearningNotes/Ch02LinearAlgebra

• Chapter 3: Linear Regression
https://nextjournal.com/DeepLearningNotes/Ch03LinearRegression

• Chapter 4: Gaussian Entropy
https://nextjournal.com/DeepLearningNotes/Ch04GaussianEntropy

• Chapter 5: Basis Functions
https://nextjournal.com/DeepLearningNotes/Ch05BasisFunctions

• Chapter 6: Stochastic Gradient Descent
https://nextjournal.com/DeepLearningNotes/Ch06StochasticGradientDescent

• Chapter 7: Softmax Formulation
https://nextjournal.com/DeepLearningNotes/Ch07SoftmaxFormulation

• Chapter 8: Layered Networks
https://nextjournal.com/DeepLearningNotes/Ch08LayeredNetworks

• Chapter 9: Convolutional Networks
https://nextjournal.com/DeepLearningNotes/Ch09ConvolutionalNetwork

• Chapter 10: Recurrent Network
https://nextjournal.com/DeepLearningNotes/Ch10RecurrentNetwork
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APPENDIX A. JULIA WITH FLUX

• Chapter 11: Autoencoders
https://nextjournal.com/DeepLearningNotes/Ch11Autoencoders

Acknowledgement: The notebooks referenced above are mainly derived from two
sources:

• https://github.com/FluxML/model-zoo

• https://juliaacademy.com/
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