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Abstract

Here we give an interpretation of the effective reproduction number, R
that arises from the Susceptible-Infectious (SI) model for the spread of
infectious disease. We show that a very simple smoothed frequentist
estimator behaves similarly to a Bayesian posterior mean for this model
and we outline a simple nowcasting scheme that corrects for onset
delay. Using our fast algorithm we perform daily estimates of R; on
an industrial scale and we use these estimates to animate government
responses to the Covid-19 outbreak. We provide an app, https://
reproduction.live| for users to view these outbreak animations.

1 Introduction

From the onset of the Covid-19 pandemic many articles have appeared in
the popular press claiming that R; is the metric to track when trying to
ascertain the success, or lack thereof, of lockdown measures put in place
by the authorities. See [4] for an excellent introduction to R; and why we
should be following it.

Usually, government advisors report on the current value of R; and if this
value is less than one the lockdown measures are deemed to be working but
if it is greater than one then more stringent lockdown measures are recom-
mended. However, methods for the computation of R; are seldom outlined.
The reason for this is that today’s methods usually involve complicated
Bayesian inference which is deemed to lie outside the skill set of the article
readership, see [6] for an example of an article in the South African popular
press.
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An exception to the above is the work of Kevin Systrom who uses the
Bayesian inference techniques of BettenCourt and Ribeiro [I] on regional
USA case count data to obtain R; values for each state and thus rank state-
wide responses to the pandemic. System has recently re-written his code
to perform for MCMC inference to obtain R; rankings. See https://rt.live/
for his latest rankings. Refreshingly, Systrom has made his methods avail-
able to the public by publishing his PyMC3 Python code with explanation as
Jupyter notebooks on github [3]. Members of the public can download his
notebooks and run them on their own datasets.

However, to understand Systrom’s MCMC code, you need a background in
statistics which many readers do not have. In this article we develop a simple
finite difference algorithm for estimating R; and we show that this simple
algorithm behaves similarly to the Bayesian posterior mean of Systrom’s
original code.

Our initial experiments were performed on South African datasets provided
at national and provincial levels in [§] and our code is made available to the
public through github [I0]. Results from these experiments can be viewed
on the MediaHack dashboard at https://mediahack.co.za/datastories/
coronavirus/dashboard/.

During the course of 2020 we will employ the methods outlined in this article
on world data provided in [7] to drive animations of the pandemic evolution
over time. These can be viewed at https://reproduction.live/.

2 The standard SI model

The Susceptible-Infectious (SI) model [2] is often used to study the spread
of infectious disease by tracking the number (S) of people susceptible to the
disease and the number (I) of people infectious with the disease.

Based on the model, the only way that a person can leave the susceptible
group is to be infected and become immediately infectious, and the only
way that a person can leave the infectious group is to recover or die. It is
further assumed that those who have recovered or died from the disease are
no longer susceptible.

It is also assumed that all those who have not had the disease are equally
susceptible and that the probability of their contracting the disease at time
t + 1 is proportional to the product of S and I at time t.
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These assumptions lead us to a pair of difference equations for S and I,
where the unit of time ¢ is one day:

Sl

Str1 = St—5% (1)
S

Iy = It—i-ﬁ%—’ﬂt (2)

Here the parameter 5 > 0 controls the rate at which the susceptible become
infected and the parameter v > 0 controls the rate at which the infectious
recover or die. The parameter IV is the size of the initial susceptible pop-
ulation and is usually assumed constant. The number of infected persons
who are no longer infectious is given by N — (S; + I).

The susceptible time series S; is a monotonically decreasing sequence start-
ing at Sg = N just before the outbreak of the disease whilst the infectious
time series I; starts at Iy = 0 just before the outbreak but then climbs and
falls depending on interventions but eventually dies out to zero when the
disease has run its course.

With this model the trajectories of Sy and I; are pre-determined at the outset
by the parameters, 8, v and N. See Figure [l| for an example trajectory.
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Figure 1: Susceptible and Infectious time series for user defined parameters,
'y:%,N:lOG and § = 2.



3 Introducing R,

To gain some control over an epidemic, authorities can enforce quarantine or
social distancing measures which may affect some of the model parameters.
The parameter v cannot be manipulated through such measures as it is a
property of the disease itself. =y is the reciprocal of the length of the infectious
period of the disease which in the case of Covid-19 is estimated to be about
one week, so v = %

The other two parameters, 8 and N, can be manipulated via interventions
and it is a common practice to define a quantity called the effective repro-

duction number, R; as follows:

5.

Rt — ;N

and then recast the discrete SI model as:

Str1 = St —YRely (4)
Iiy1 = Li+vL(Re—1) (5)
Note that Ry = g which is called the basic reproduction number and

tells us how many persons an infected person will infect during their in-
fectious period at the start of an epidemic and before any interventions can
be mounted. In the case depicted in figure(l, the basic reproduction number
: — BS _—

is Rg = SN = 2.

Note that if no interventions are put in place during the course of the epi-
demic then R; will decrease monotonically as S; decreases. The goal of
interventions is to decrease R; faster than the natural decline induced by
the diminishing pool of susceptible persons. In particular it is desirable to
force Ry < 1 so that the pool of infectious is smaller when a person leaves
the pool than when he enters it.

To see if an intervention is successful or not we must have some way of
estimating the current value of R; from daily new-case counts, C, which is
how most governments currently release Covid-19 data.



4 Estimating R; from case count data

Almost all modern attempts at estimating R; implement Bayes’s rule to
estimate current R; from previous values of Ry, see for example [I] for the
theory and [3] for a recent implementation. Here we will use a frequentist
approach and with the use of a simple smoothing filter we will show how to
estimate R; directly from the data.

An instantaneous estimate for yesterday’s R value can be obtained by com-
paring the size of yesterday’s infectious pool with the size of today’s infec-
tious pool by rewriting equation [5| as

1 It+1—ft>
Ry = 1+—— 6
' 7< I; (6)

As we can estimate the current size of the infectious pool, I(t), by summing
new case counts, Cy, over the preceding infectious period:

It = Z Ct (7)

i1
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Equations [6] and [7] provide us with an algorithm for estimating R;. However
are three drawbacks to this algorithm.

1) Case reporting is very erratic due to things like testing backlogs and
data collection. Indeed, new case counts often exhibit a 7-day cycle
due to under-reporting over week-ends. To overcome erratic reporting
we apply a 7-day smoothing filter to the time series and assume that
the real world process is not as stochastic as the actual reporting.

2) There is a natural delay, when the patient is infectious but un-diagnosed,
between the infectious onset of the disease and the appearance of symp-
toms and case reporting. In the literature, this problem is solved by
convolving the new cases time series with an empirical estimate of re-
porting delays. This procedure shifts the time series a few days earlier
and causes case counts to shrink at the end of the time series. This
shrinkage is repaired using a a technique called nowcasting. We at-
tempt to implement a simple version of onset correction on our Covid-
19 data by convolving a Weibull distribution with our case time series



augmented by a short exponential (growth/decay) forecast. This is
achieved by implementing simple linear regression in the log domain.

3) The difference scheme proposed in equation |§| is unstable when the
epidemic has been vanquished and the pool of infectious persons is
near zero. At this stage a sudden appearance of one or two new cases
will send the estimate for R; sky high. The correct way to deal with
this problem is to implement Bayes’ rule for updating R; that requires
the calculation of priors from preceding values of R; and then selects
the most likely R; trajectory. We implement a fast version of Bayes’
rule in a further attempt to smooth our estimates.

4.1 Pseudocode

Given a new-case count time series, C; , for a region an R; time series can
be computed as follows:

input : C; daily reported new-case counts
truncate C; by removing leading zeros;
compute SC; as cumulative sum of Cy;
impute missing values on SCy using linear interpolation;
reconstruct C; by using first differences on SCy;
apply a 7-day moving-average to the C; series;
apply linear regression in the log domain to forecast new C; data;
apply onset estimation to the C; series;
compute the infectious pool time series according to equation
compute the R; time series according to equation
moderate the R; time series using Bayes’ rule;
output: R; effective reproduction rate estimates

Algorithm 1: pseudocode for constructing R; from reported case counts.
No attempt is made to estimate the under reported asymptomatic cases.
We assume that the proportion of under reporting is constant over short
time periods.

It remains to give further details on onset estimation and credible intervals.
4.2 Omnset correction

Onset correction translates positive case counts to the dates where they
likely occurred. If we have the onset delay distribution, we can distribute



case counts back in time according to that distribution. To obtain an on-
set distribution we need case data that gives reporting time and estimated
contraction time for each case. In South Africa we are unable to obtain
such data and so to proceed we rely on work done using USA data for the
rt.live dashboard where an empirical distribution for onset delays was
obtained from US case data, see figure [2|
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Figure 2: Empirical onset delay distribution from US case data, see [3] for
details.

Although we don’t have actual numbers for this distribution we can get
some idea of its shape and scale by studying figure [2| and then try and find
a known statistical distribution to do the job for us. The distribution we
select is the Weibull distribution with shape 2 and scale 5, see figure
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Figure 3: Weibull(2,5) distribution for simulating onset delay.

Now that we have an onset delay distribution to work with we can perform
the onset correction. As expained by Kevin Systrom in [3] we accomplish
this, by reversing the new-case time series, convolving it with the delay
distribution and then reversing the series again to obtain the onset curve.
However this algorithm results in right censoring of the onset curve due to
zero padding at the boundaries of the signal.

4.3 Nowcasting

To avoid the right censoring we implement simple nowcasting by first aug-
menting our time series into the future by repeatedly using regression over
the last s days of the time series to forecast a new data point for the next
day.

For a simple linear regression scheme, we have a two parameter model:

C(t) =0y + 01t = 0"t

with



With this model the normal equations for the parameters are usually given
in the form

0= (X"x)"' xTy

where in our case the data for the regression comes from the last s days of
the case count time series, vis:

17 [ Yir = Cp—s+1 i
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and according to Wolfram Alpha
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With this linear regression setup we estimate our next day’s case counts as:

Cn+1 = Ys+1
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In our code we transform the data into the log domain before using [J] to
estimate log(c,,+1) and then we exponentiate to transform back. We perform
this estimation repeatedly to generate realistic padding for the signal before
applying the Weibull convolution.



5 Credible Intervals

To obtain confidence in our estimates we must invoke Bayes and consider a
range of possible R; values at any one time. To this end we maintain a day
by day probability distribution of R; values, call them R, and for each one
estimate the next day infectious population using equation [5| as

it = L(1+~v(RE-1)) (10)

After seeing the next day’s data, k = Iy1, we calculate the likelihood of each
of our estimates by computing the probability that a Poisson distribution
with parameter A = 77, ; would deliver the observed data:

A=A
ir1 = P |Ri) = Pois(k; \) = 1 (11)

We then use Bayes’ rule and some Gaussian smoothing to tabulate the prob-
ability distribution R; having seen the next day’s data.

P(Rillt+1) o< P(le1|RE)P(RE) (12)

and we select the most likely R; as R;  where

st = argmax(P(R{|Li+1)) (13)

s

and as a bonus we obtain a so called 90% credible interval for our most likely
estimate by finding the region of the distribution, R; , that supports 90%
of its density, see [5] for a full description.

We note here that using Bayes in this way is computationally expensive, of
the order O(n * d®) where n is the length of our time series and d is the size
of our distribution grid. For our full Bayesian inference we make use of FFT
techniques to perform the Gaussian smoothing involved which allows us to
compute R; estimates for thousand of time series each day to be presented
on demand to the user via our https://reproduction.live app, see later.
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6 Implementation on South African data

We obtain the latest case counts from a github repository maintained by the
Data Science for Social Impact research group of the University of Pretoria,

see [§].

The results of moving average smoothing, onset correction and nowcasting
are depicted in figure [4

cases onset adjustment and nowcasting
for South Africa from 2020-06-15 data

5000

BN EW CASES
[ onset nowcast

4000

3000

New cases

2000

1000

Figure 4: South African case counts after onset and nowcasting correction.

From the corrected new-case counts we compute the Infectious counts, I,
by summing new cases over the infectious period and then we estimate R;.
The result is shown in figure
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finite difference Rt estimates from onset adjusted infectives
for South Africa from 2020-06-15 data
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Figure 5: Simple finite difference estimates of R; from infectious estimates
after onset nowcasting correction of South African case counts.

If we want the associated credible intervals then we must implement the full
Bayesian procedure as outlined above and we note that once death counts
have risen sufficiently we can repeat the whole procedure using death counts
instead of case counts to obtain R; estimates. The only change we must
make is to the parameters of our Weibull distribution to cater for the longer
time delay between onset and death (which we estimate at about 21 days)
Both estimates with credible intervals are performed on South African data
and results are shown in figure [6]
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Figure 6: Tracking R; using both reported cases and reported deaths.

By comparing figure [f] with figure [6] the reader can see that after onset
correction a simple finite difference scheme gives a reasonable estimate of
the Bayesian posterior mean. The Julia script made available in [I0] enables
the reader to repeat the analysis using either simple finite differences or full
Bayesian inference.

7 Industrial scale R; estimates

Using open data from https://github.com/open-covid-19/data, see [7],
we compute R; estimates each day at national, provincial and regional level
and we present them via a Nuxt app to the user at https://reproduction.
livel

New R; estimates are computed each day using a Julia script and these
precomputed time series are stored in an infinite tree-like directory of json
files on our server so that access to R; estimates of interest is fast enough
to provide animations of the Covid-19 outbreak in your region.

At the time of writing we process 7183 time series nightly and this number
will grow as the open-covid-19 repository [7] finds new data sources.
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8 Conclusions

The results of our simple frequentist implementation look fairly reasonable.
The technique affords the layman the opportunity to analyse his own data
and tweak model parameters as he sees fit. Personalised models can be
used to decide on a strategy for curtailing an epidemic through quarantines,
lockdowns and social distancing. Access to pre-computed R; estimates with
Bayesian creditable intervals is provided via a web based Nuxt app at https:
//reproduction.livel
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