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A-LEVEL MECHANICS
Mathematics and Further Mathematics

(March 2021)

This document is a self contained set of MECHANICS notes for A level Mathematics
and Further Mathematics. The notes assume that the student is familiar with A-LEVEL
calculus. Material on vectors and matrices, usually offered in a calculus course, is repeated
here to provide continuity.

These notes are available as an open source document from:
https://hughmurrell.github.io/.

This work is largely derived from a set of student notes written up by Dexter Chua
whilst an undergraduate at Cambridge. The courses in question were Dynamics and
Relativity taught by G. I. Ogilvie in the Lent term of 2015 and Vectors and Matrices
taught by N. Peake in the Michaelmas term of 2014.
The original versions of Dexter’s course notes can be found here:
https://dec41.user.srcf.net/notes/

For this document, Dexter’s notes have been augmented with worked examples from
Thomas Backman’s notes on mechanics. Thomas’s problems have been selected and
somewhat modified to fit the theme of the rest of the notes but the interested reader can
view the originals here:
https://github.com/exscape/8.01x-notes

This collection also includes worked problems from past A-level and STEP (Sixth Term
Examination Paper) papers. Further worked problems will be added in due course
depending on reader engagement with the collection.

The intention is that this set of Mechanics notes will provide preparation material for the
following A-LEVEL papers:

Mathematics
Paper 4 (Mechanics)

Further Mathematics
Paper 3 (Mechanics)

STEP
Section B (Mechanics)

Prospective A-level students and students planning to write the Sixth Term Examination
Paper (STEP), are encouraged to make use of this text to supplement their A-level
materials. Answers and hints to selected exercises are available in the appendix. Further
assistance with challenging problems can be obtained via email. To obtain help, propose
new problems or point out errors please feel free to email hugh.murrell@gmail.com.
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Chapter 1

Vectors and Matrices
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1.1 Introduction

Vectors and matrices is the language in which a lot of mathematics is written in. In physics,
many variables such as position and momentum are expressed as vectors. Heisenberg also
formulated quantum mechanics in terms of vectors and matrices. In statistics, one might
pack all the results of all experiments into a single vector, and work with a large vector
instead of many small quantities. In group theory, matrices are used to represent the
symmetries of space (as well as many other groups).

So what is a vector? Vectors are very general objects, and can in theory represent very
complex objects. However, in this course, our focus is on vectors in Rn. We can think
of each of these as an array of n real numbers. For example, (1, 6, 4) is a vector in R3.
These vectors are added in the obvious way. For example, (1, 6, 4) + (3, 5, 2) = (4, 11, 6).
We can also multiply vectors by numbers, say 2(1, 6, 4) = (2, 12, 8). Often, these vectors
represent points in an n-dimensional space.

Matrices, on the other hand, represent functions between vectors, i.e. a function that
takes in a vector and outputs another vector. These, however, are not arbitrary functions.
Instead matrices represent linear functions. These are functions that satisfy the equality
f(λx + µy) = λf(x) + µf(y) for arbitrary numbers λ, µ and vectors x,y. It is important
to note that the function x 7→ x + c for some constant vector c is not linear according to
this definition, even though it might look linear.

It turns out that for each linear function from Rn to Rm, we can represent the function
uniquely by an m× n array of numbers, which is what we call the matrix. Expressing a
linear function as a matrix allows us to conveniently study many of its properties, which
is why we usually talk about matrices instead of the function itself.

6



1.2 Vectors

We might have first learned vectors as arrays of numbers, and then defined addition and
multiplication in terms of the individual numbers in the vector. This however, is not what
we are going to do here. The array of numbers is just a representation of the vector,
instead of the vector itself.

Here, we will define vectors in terms of what they are, and then the various operations
are defined axiomatically according to their properties.

1.2.1 Definition and basic properties

Definition 1 (Vector). A vector space over R is a collection of vectors v ∈ V , together
with two operations: addition of two vectors and multiplication of a vector with a scalar
(i.e. a number from R).

Vector addition has to satisfy the following axioms:

(i) a + b = b + a (commutativity)

(ii) (a + b) + c = a + (b + c) (associativity)

(iii) There is a vector 0 such that a + 0 = a. (identity)

(iv) For all vectors a, there is a vector (−a) such that a + (−a) = 0 (inverse)

Scalar multiplication has to satisfy the following axioms:

(i) λ(a + b) = λa + λb.

(ii) (λ+ µ)a = λa + µa.

(iii) λ(µa) = (λµ)a.

(iv) 1a = a.

Often, vectors have a length and direction. The length is denoted by |v|. In this case, we
can think of a vector as an “arrow” in space. Note that λa is either parallel (λ ≥ 0) to or
anti-parallel (λ ≤ 0) to a.

Definition 2 (Unit vector). A unit vector is a vector with length 1. We write a unit
vector as v̂.

Example. Rn is a vector space with component-wise addition and scalar multiplication.
Note that the vector space R is a line, but not all lines are vector spaces. For example,
x+ y = 1 is not a vector space since it does not contain 0.

1.2.2 Scalar product

In a vector space, we can define the scalar product of two vectors, which returns a scalar
(i.e. a real or complex number). We will first look at the usual scalar product defined for
Rn, and then define the scalar product axiomatically.
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Geometric picture (R2 and R3 only)

Definition 3 (Scalar/dot product). a · b = |a||b| cos θ, where θ is the angle between a
and b. It satisfies the following properties:

(i) a · b = b · a

(ii) a · a = |a|2 ≥ 0

(iii) a · a = 0 iff a = 0

(iv) If a · b = 0 and a,b 6= 0, then a and b are perpendicular.

Intuitively, this is the product of the parts of a and b that are parallel.

b

a

|a|

|a| cos θ

Using the dot product, we can write the projection of b onto a as (|b| cos θ)â = (â · b)â.

The cosine rule can be derived as follows:

|
−−→
BC|2 = |

−→
AC −

−→
AB|2

= (
−→
AC −

−→
AB) · (

−→
AC −

−→
AB)

= |
−→
AB|2 + |

−→
AC|2 − 2|

−→
AB||

−→
AC| cos θ

We will later come up with a convenient algebraic way to evaluate this scalar product.

General algebraic definition

Definition 4 (Inner/scalar product). In a real vector space V , an inner product or
scalar product is a map V × V → R that satisfies the following axioms. It is written as
x · y or 〈x | y〉.

(i) x · y = y · x (symmetry)

(ii) x · (λy + µz) = λx · y + µx · z (linearity in 2nd argument)

(iii) x · x ≥ 0 with equality iff x = 0 (positive definite)

Note that this is a definition only for real vector spaces, where the scalars are real. We
will have a different set of definitions for complex vector spaces.

In particular, here we can use (i) and (ii) together to show linearity in 1st argument.
However, this is generally not true for complex vector spaces.
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Definition 5. The norm of a vector, written as |a| or ‖a‖, is defined as

|a| =
√

a · a.

Example. Instead of the usual Rn vector space, we can consider the set of all real
(integrable) functions as a vector space. We can define the following inner product:

〈f | g〉 =

∫ 1

0

f(x)g(x) dx.

1.2.3 Cauchy-Schwarz inequality

Theorem 1 (Cauchy-Schwarz inequality). For all x,y ∈ Rn,

|x · y| ≤ |x||y|.

Proof. Consider the expression |x− λy|2. We must have

|x− λy|2 ≥ 0

(x− λy) · (x− λy) ≥ 0

λ2|y|2 − λ(2x · y) + |x|2 ≥ 0.

Viewing this as a quadratic in λ, we see that the quadratic is non-negative and thus
cannot have 2 real roots. Thus the discriminant ∆ ≤ 0. So

4(x · y)2 ≤ 4|y|2|x|2

(x · y)2 ≤ |x|2|y|2

|x · y| ≤ |x||y|.

Note that we proved this using the axioms of the scalar product. So this result holds for
all possible scalar products on any (real) vector space.

Example. Let x = (α, β, γ) and y = (1, 1, 1). Then by the Cauchy-Schwarz inequality,
we have

α + β + γ ≤
√

3
√
α2 + β2 + γ2

α2 + β2 + γ2 ≥ αβ + βγ + γα,

with equality if α = β = γ.

Corollary (Triangle inequality).

|x + y| ≤ |x|+ |y|.

Proof.

|x + y|2 = (x + y) · (x + y)

= |x|2 + 2x · y + |y|2

≤ |x|2 + 2|x||y|+ |y|2

= (|x|+ |y|)2.

So

|x + y| ≤ |x|+ |y|.
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1.2.4 Vector product

Apart from the scalar product, we can also define the vector product. However, this is
defined only for R3 space, but not spaces in general.

Definition 6 (Vector/cross product). Consider a,b ∈ R3. Define the vector product

a× b = |a||b| sin θn̂,

where n̂ is a unit vector perpendicular to both a and b. Since there are two (opposite)
unit vectors that are perpendicular to both of them, we pick n̂ to be the one that is
perpendicular to a,b in a right-handed sense.

a

b

a× b

The vector product satisfies the following properties:

(i) a× b = −b× a.

(ii) a× a = 0.

(iii) a× b = 0⇒ a = λb for some λ ∈ R (or b = 0).

(iv) a× (λb) = λ(a× b).

(v) a× (b + c) = a× b + a× c.

If we have a triangle OAB, its area is given by 1
2
|
−→
OA||

−−→
OB| sin θ = 1

2
|
−→
OA×

−−→
OB|. We define

the vector area as 1
2

−→
OA×

−−→
OB, which is often a helpful notion when we want to do calculus

with surfaces.

There is a convenient way of calculating vector products:

Proposition.

a× b = (a1î + a2ĵ + a3k̂)× (b1î + b2ĵ + b3k̂)

= (a2b3 − a3b2)̂i + · · ·

=

∣∣∣∣∣∣
î ĵ k̂
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
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1.2.5 Scalar triple product

Definition 7 (Scalar triple product). The scalar triple product is defined as

[a,b, c] = a · (b× c).

Proposition. If a parallelepiped has sides represented by vectors a,b, c that form a
right-handed system, then the volume of the parallelepiped is given by [a,b, c].

b

c

a

Proof. The area of the base of the parallelepiped is given by |b||c| sin θ = |b× c|. Thus the
volume= |b× c||a| cosφ = |a · (b× c)|, where φ is the angle between a and the normal
to b and c. However, since a,b, c form a right-handed system, we have a · (b× c) ≥ 0.
Therefore the volume is a · (b× c).

Since the order of a,b, c doesn’t affect the volume, we know that

[a,b, c] = [b, c, a] = [c, a,b] = −[b, a, c] = −[a, c,b] = −[c,b, a].

Theorem 2. a× (b + c) = a× b + a× c.

Proof. Let d = a× (b + c)− a× b− a× c. We have

d · d = d · [a× (b + c)]− d · (a× b)− d · (a× c)

= (b + c) · (d× a)− b · (d× a)− c · (d× a)

= 0

Thus d = 0.

1.2.6 Spanning sets and bases

2D space

Definition 8 (Spanning set). A set of vectors {a,b} spans R2 if for all vectors r ∈ R2,
there exist some λ, µ ∈ R such that r = λa + µb.

In R2, two vectors span the space if a× b 6= 0.

Theorem 3. The coefficients λ, µ are unique.

Proof. Suppose that r = λa + µb = λ′a + µ′b. Take the vector product with a on both
sides to get (µ− µ′)a× b = 0. Since a× b 6= 0, then µ = µ′. Similarly, λ = λ′.
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Definition 9 (Linearly independent vectors in R2). Two vectors a and b are linearly
independent if for α, β ∈ R, αa + βb = 0 iff α = β = 0. In R2, a and b are linearly
independent if a× b 6= 0.

Definition 10 (Basis of R2). A set of vectors is a basis of R2 if it spans R2 and are
linearly independent.

Example. {̂i, ĵ} = {(1, 0), (0, 1)} is a basis of R2. They are the standard basis of R2.

3D space

We can extend the above definitions of spanning set and linear independent set to R3.
Here we have

Theorem 4. If a,b, c ∈ R3 are non-coplanar, i.e. a · (b× c) 6= 0, then they form a basis
of R3.

Proof. For any r, write r = λa + µb + νc. Performing the scalar product with b× c on
both sides, one obtains r · (b× c) = λa · (b× c) + µb · (b× c) + νc · (b× c) = λ[a,b, c].
Thus λ = [r,b, c]/[a,b, c]. The values of µ and ν can be found similarly. Thus each r can
be written as a linear combination of a,b and c.

By the formula derived above, it follows that if αa + βb + γc = 0, then α = β = γ = 0.
Thus they are linearly independent.

Note that while we came up with formulas for λ, µ and ν, we did not actually prove that
these coefficients indeed work. This is rather unsatisfactory. We could, of course, expand
everything out and show that this indeed works, but in IB Linear Algebra, we will prove
a much more general result, saying that if we have an n-dimensional space and a set of n
linear independent vectors, then they form a basis.

In R3, the standard basis is î, ĵ, k̂, or (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Rn space

In general, we can define

Definition 11 (Linearly independent vectors). A set of vectors {v1,v2,v3 · · ·vm} is
linearly independent if

m∑
i=1

λivi = 0⇒ (∀i)λi = 0.

Definition 12 (Spanning set). A set of vectors {u1,u2,u3 · · ·um} ⊆ Rn is a spanning
set of Rn if

(∀x ∈ Rn)(∃λi)
m∑
i=1

λiui = x

Definition 13 (Basis vectors). A basis of Rn is a linearly independent spanning set. The
standard basis of Rn is e1 = (1, 0, 0, · · · 0), e2 = (0, 1, 0, · · · 0), · · · en = (0, 0, 0, · · · , 1).

12



Definition 14 (Orthonormal basis). A basis {ei} is orthonormal if ei · ej = 0 if i 6= j
and ei · ei = 1 for all i, j.

Using the Kronecker Delta symbol, which we will define later, we can write this condition
as ei · ej = δij.

Definition 15 (Dimension of vector space). The dimension of a vector space is the
number of vectors in its basis. (Exercise: show that this is well-defined)

We usually denote the components of a vector x by xi. So we have x = (x1, x2, · · · , xn).

Definition 16 (Scalar product). The scalar product of x,y ∈ Rn is defined as x · y =∑
xiyi.

The reader should check that this definition coincides with the |x||y| cos θ definition in
the case of R2 and R3.

1.2.7 Vector subspaces

Definition 17 (Vector subspace). A vector subspace of a vector space V is a subset of
V that is also a vector space under the same operations. Both V and {0} are subspaces
of V . All others are proper subspaces.

A useful criterion is that a subset U ⊆ V is a subspace iff

(i) x,y ∈ U ⇒ (x + y) ∈ U .

(ii) x ∈ U ⇒ λx ∈ U for all scalars λ.

(iii) 0 ∈ U .

This can be more concisely written as “U is non-empty and for all x,y ∈ U , (λx+µy) ∈ U”.

Example.

(i) If {a,b, c} is a basis of R3, then {a + c,b + c} is a basis of a 2D subspace.

Suppose x,y ∈ span{a + c,b + c}. Let

x = α1(a + c) + β1(b + c);

y = α2(a + c) + β2(b + c).

Then

λx + µy = (λα1 + µα2)(a + c) + (λβ1 + µβ2)(b + c) ∈ span{a + c,b + c}.

Thus this is a subspace of R3.

Now check that a + c,b + c is a basis. We only need to check linear independence.
If α(a + c)+β(b + c) = 0, then αa+βb+(α+β)c = 0. Since {a,b, c} is a basis of
R3, therefore a,b, c are linearly independent and α = β = 0. Therefore a + c,b + c
is a basis and the subspace has dimension 2.
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(ii) Given a set of numbers αi, let U = {x ∈ Rn :
∑n

i=1 αixi = 0}. We show that
this is a vector subspace of Rn: Take x,y ∈ U , then consider λx + µy. We have∑
αi(λxi + µyi) = λ

∑
αixi + µ

∑
αiyi = 0. Thus λx + µy ∈ U .

The dimension of the subspace is n−1 as we can freely choose xi for i = 1, · · · , n−1
and then xn is uniquely determined by the previous xi’s.

(iii) Let W = {x ∈ Rn :
∑
αixi = 1}. Then

∑
αi(λxi + µyi) = λ+ µ 6= 1. Therefore W

is not a vector subspace.

1.2.8 Suffix notation

Here we are going to introduce a powerful notation that can help us simplify a lot of
things.

First of all, let v ∈ R3. We can write v = v1e1 + v2e2 + v3e3 = (v1, v2, v3). So in general,
the ith component of v is written as vi. We can thus write vector equations in component
form. For example, a = b→ ai = bi or c = αa + βb→ ci = αai + βbi. A vector has one
free suffix, i, while a scalar has none.

Notation (Einstein’s summation convention). Consider a sum x · y =
∑
xiyi. The

summation convention says that we can drop the
∑

symbol and simply write x · y =
xiyi. If suffixes are repeated once, summation is understood.

Note that i is a dummy suffix and doesn’t matter what it’s called, i.e. xiyi = xjyj = xkyk
etc.

The rules of this convention are:

(i) Suffix appears once in a term: free suffix

(ii) Suffix appears twice in a term: dummy suffix and is summed over

(iii) Suffix appears three times or more: WRONG!

Example. [(a · b)c− (a · c)b]i = ajbjci − ajcjbi summing over j understood.

It is possible for an item to have more than one index. These objects are known as
tensors, which will be studied in depth in the IA Vector Calculus course.

Here we will define two important tensors:

Definition 18 (Kronecker delta).

δij =

{
1 i = j

0 i 6= j
.

We have δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

 =

1 0 0
0 1 0
0 0 1

 = I.

So the Kronecker delta represents an identity matrix.
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Example.

(i) aiδi1 = a1. In general, aiδij = aj (i is dummy, j is free).

(ii) δijδjk = δik

(iii) δii = n if we are in Rn.

(iv) apδpqbq = apbp with p, q both dummy suffices and summed over.

Definition 19 (Alternating symbol εijk). Consider rearrangements of 1, 2, 3. We can
divide them into even and odd permutations. Even permutations include (1, 2, 3), (2, 3, 1)
and (3, 1, 2). These are permutations obtained by performing two (or no) swaps of the
elements of (1, 2, 3). (Alternatively, it is any “rotation” of (1, 2, 3))

The odd permutations are (2, 1, 3), (1, 3, 2) and (3, 2, 1). They are the permutations
obtained by one swap only.

Define

εijk =


+1 ijk is even permutation

−1 ijk is odd permutation

0 otherwise (i.e. repeated suffices)

εijk has 3 free suffices.

We have ε123 = ε231 = ε312 = +1 and ε213 = ε132 = ε321 = −1. ε112 = ε111 = · · · = 0.

We have

(i) εijkδjk = εijj = 0

(ii) If ajk = akj (i.e. aij is symmetric), then εijkajk = εijkakj = −εikjakj. Since
εijkajk = εikjakj (we simply renamed dummy suffices), we have εijkajk = 0.

Proposition. (a× b)i = εijkajbk

Proof. By expansion of formula

Theorem 5. εijkεipq = δjpδkq − δjqδkp

Proof. Proof by exhaustion:

RHS =


+1 if j = p and k = q

−1 if j = q and k = p

0 otherwise

LHS: Summing over i, the only non-zero terms are when j, k 6= i and p, q 6= i. If j = p and
k = q, LHS is (−1)2 or (+1)2 = 1. If j = q and k = p, LHS is (+1)(−1) or (−1)(+1) = −1.
All other possibilities result in 0.

Equally, we have εijkεpqk = δipδjq − δjpδiq and εijkεpjq = δipδkq − δiqδkp.
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Proposition.
a · (b× c) = b · (c× a)

Proof. In suffix notation, we have

a · (b× c) = ai(b× c)i = εijkbjckai = εjkibjckai = b · (c× a).

Theorem 6 (Vector triple product).

a× (b× c) = (a · c)b− (a · b)c.

Proof.

[a× (b× c)]i = εijkaj(b× c)k
= εijkεkpqajbpcq

= εijkεpqkajbpcq

= (δipδjq − δiqδjp)ajbpcq
= ajbicj − ajcibj
= (a · c)bi − (a · b)ci

Similarly, (a× b)× c = (a · c)b− (b · c)a.

Spherical trigonometry

Proposition. (a× b) · (a× c) = (a · a)(b · c)− (a · b)(a · c).

Proof.

LHS = (a× b)i(a× c)i

= εijkajbkεipqapcq

= (δjpδkq − δjqδkp)ajbkapcq
= ajbkajck − ajbkakcj
= (a · a)(b · c)− (a · b)(a · c)

Consider the unit sphere, center O, with a,b, c on the surface.

A

B C

δ(A,B) α

16



Suppose we are living on the surface of the sphere. So the distance from A to B is the
arc length on the sphere. We can imagine this to be along the circumference of the circle
through A and B with center O. So the distance is ∠AOB, which we shall denote by
δ(A,B). So a · b = cos∠AOB = cos δ(A,B). We obtain similar expressions for other dot
products. Similarly, we get |a× b| = sin δ(A,B).

cosα =
(a× b) · (a× c)

|a× b||a× c|

=
b · c− (a · b)(a · c)

|a× b||a× c|

Putting in our expressions for the dot and cross products, we obtain

cosα sin δ(A,B) sin δ(A,C) = cos δ(B,C)− cos δ(A,B) cos δ(A,C).

This is the spherical cosine rule that applies when we live on the surface of a sphere. What
does this spherical geometry look like?

Consider a spherical equilateral triangle. Using the spherical cosine rule,

cosα =
cos δ − cos2 δ

sin2 δ
= 1− 1

1 + cos δ
.

Since cos δ ≤ 1, we have cosα ≤ 1
2

and α ≥ 60◦. Equality holds iff δ = 0, i.e. the triangle
is simply a point. So on a sphere, each angle of an equilateral triangle is greater than 60◦,
and the angle sum of a triangle is greater than 180◦.

1.2.9 Geometry

Lines

Any line through a and parallel to t can be written as

x = a + λt.

By crossing both sides of the equation with t, we have

Theorem 7. The equation of a straight line through a and parallel to t is

(x− a)× t = 0 or x× t = a× t.

Plane

To define a plane Π, we need a normal n to the plane and a fixed point b. For any x ∈ Π,
the vector x− b is contained in the plane and is thus normal to n, i.e. (x− b) · n = 0.

Theorem 8. The equation of a plane through b with normal n is given by

x · n = b · n.
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If n = n̂ is a unit normal, then d = x · n̂ = b · n̂ is the perpendicular distance from the
origin to Π.

Alternatively, if a,b, c lie in the plane, then the equation of the plane is

(x− a) · [(b− a)× (c− a)] = 0.

Example.

(i) Consider the intersection between a line x× t = a× t with the plane x · n = b · n.
Cross n on the right with the line equation to obtain

(x · n)t− (t · n)x = (a× t)× n

Eliminate x · n using x · n = b · n

(t · n)x = (b · n)t− (a× t)× n

Provided t · n is non-zero, the point of intersection is

x =
(b · n)t− (a× t)× n

t · n
.

Exercise: what if t · n = 0?

(ii) Shortest distance between two lines. Let L1 be (x − a1) × t1 = 0 and L2 be
(x− a2)× t2 = 0.

The distance of closest approach s is along a line perpendicular to both L1 and L2,
i.e. the line of closest approach is perpendicular to both lines and thus parallel to
t1 × t2. The distance s can then be found by projecting a1 − a2 onto t1 × t2. Thus

s =
∣∣∣(a1 − a2) · t1×t2

|t1×t2|

∣∣∣.
1.2.10 Vector equations

Example. x− (x× a)× b = c. Strategy: take the dot or cross of the equation with
suitable vectors. The equation can be expanded to form

x− (x · b)a + (a · b)x = c.

Dot this with b to obtain

x · b− (x · b)(a · b) + (a · b)(x · b) = c · b
x · b = c · b.

Substituting this into the original equation, we have

x(1 + a · b) = c + (c · b)a

If (1 + a · b) is non-zero, then

x =
c + (c · b)a

1 + a · b
Otherwise, when (1 + a · b) = 0, if c + (c · b)a 6= 0, then a contradiction is reached.
Otherwise, x · b = c · b is the most general solution, which is a plane of solutions.
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1.3 Linear maps

A linear map is a special type of function between vector spaces. In fact, most of the
time, these are the only functions we actually care about. They are maps that satisfy the
property f(λa + µb) = λf(a) + µf(b).

We will first look at two important examples of linear maps — rotations and reflections,
and then study their properties formally.

1.3.1 Examples

Rotation in R3

In R3, first consider the simple cases where we rotate about the z axis by θ. We call this
rotation R and write x′ = R(x).

Suppose that initially, x = (x, y, z) = (r cosφ, r sinφ, z). Then after a rotation by θ, we
get

x′ = (r cos(φ+ θ), r sin(φ+ θ), z)

= (r cosφ cos θ − r sinφ sin θ, r sinφ cos θ + r cosφ sin θ, z)

= (x cos θ − y sin θ, x sin θ + y cos θ, z).

We can represent this by a matrix R such that x′i = Rijxj. Using our formula above, we
obtain

R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Now consider the general case where we rotate by θ about n̂.

O

n̂

A

x

B

A′

Cx′
B A

A′

C

θ

We have x′ =
−−→
OB +

−−→
BC +

−−→
CA′. We know that

−−→
OB = (n̂ · x)n̂
−−→
BC =

−→
BA cos θ

= (
−−→
BO +

−→
OA) cos θ

= (−(n̂ · x)n̂ + x) cos θ
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Finally, to get
−→
CA, we know that |

−−→
CA′| = |

−−→
BA′| sin θ = |

−→
BA| sin θ = |n̂× x| sin θ. Also,

−−→
CA′ is parallel to n̂× x. So we must have

−−→
CA′ = (n̂× x) sin θ.

Thus x′ = x cos θ + (1− cos θ)(n̂ · x)n̂ + n̂× x sin θ. In components,

x′i = xi cos θ + (1− cos θ)njxjni − εijkxjnk sin θ.

We want to find an R such that x′i = Rijxj. So

Rij = δij cos θ + (1− cos θ)ninj − εijknk sin θ.

Reflection in R3

Suppose we want to reflect through a plane through O with normal n̂. First of all the
projection of x onto n̂ is given by (x · n̂)n̂. So we get x′ = x−2(x · n̂)n̂. In suffix notation,
we have x′i = xi − 2xjnjni. So our reflection matrix is Rij = δij − 2ninj.

x′

n̂ x

1.3.2 Linear Maps

Definition 20 (Domain, codomain and image of map). Consider sets A and B and
mapping T : A→ B such that each x ∈ A is mapped into a unique x′ = T (x) ∈ B. A is
the domain of T and B is the co-domain of T . Typically, we have T : Rn → Rm.

Definition 21 (Linear map). Let V,W be real vector spaces, and T : V → W . Then T
is a linear map if

(i) T (a + b) = T (a) + T (b) for all a,b ∈ V .

(ii) T (λa) = λT (a) for all λ ∈ R.

Equivalently, we have T (λa + µb) = λT (a) + µT (b).

Example.

(i) Consider a translation T : R3 → R3 with T (x) = x + a for some fixed, given a. This
is not a linear map since T (λx + µy) 6= λx + µy + (λ+ µ)a.

(ii) Rotation, reflection and projection are linear transformations.
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Definition 22 (Image and kernel of map). The image of a map f : U → V is the subset
of V {f(u) : u ∈ U}. The kernel is the subset of U {u ∈ U : f(u) = 0}.

Example.

(i) Consider S : R3 → R2 with S(x, y, z) = (x+ y, 2x− z). Simple yet tedious algebra
shows that this is linear. Now consider the effect of S on the standard basis.
S(1, 0, 0) = (1, 2), S(0, 1, 0) = (1, 0) and S(0, 0, 1) = (0,−1). Clearly these are
linearly dependent, but they do span the whole of R2. We can say S(R3) = R2. So
the image is R2.

Now solve S(x, y, z) = 0. We need x+ y = 0 and 2x− z = 0. Thus x = (x,−x, 2x),
i.e. it is parallel to (1,−1, 2). So the set {λ(1,−1, 2) : λ ∈ R} is the kernel of S.

(ii) Consider a rotation in R3. The kernel is the zero vector and the image is R3.

(iii) Consider a projection of x onto a plane with normal n̂. The image is the plane itself,
and the kernel is any vector parallel to n̂

Theorem 9. Consider a linear map f : U → V , where U, V are vector spaces. Then
im(f) is a subspace of V , and ker(f) is a subspace of U .

Proof. Both are non-empty since f(0) = 0.

If x,y ∈ im(f), then ∃a,b ∈ U such that x = f(a),y = f(b). Then λx + µy =
λf(a) + µf(b) = f(λa + µb). Now λa + µb ∈ U since U is a vector space, so there is an
element in U that maps to λx + µy. So λx + µy ∈ im(f) and im(f) is a subspace of V .

Suppose x,y ∈ ker(f), i.e. f(x) = f(y) = 0. Then f(λx + µy) = λf(x) + µf(y) =
λ0 + µ0 = 0. Therefore λx + µy ∈ ker(f).

1.3.3 Rank and nullity

Definition 23 (Rank of linear map). The rank of a linear map f : U → V , denoted by
r(f), is the dimension of the image of f .

Definition 24 (Nullity of linear map). The nullity of f , denoted n(f) is the dimension
of the kernel of f .

Example. For the projection onto a plane in R3, the image is the whole plane and the
rank is 2. The kernel is a line so the nullity is 1.

Theorem 10 (Rank-nullity theorem). For a linear map f : U → V ,

r(f) + n(f) = dim(U).

Proof. (Non-examinable) Write dim(U) = n and n(f) = m. If m = n, then f is the zero
map, and the proof is trivial, since r(f) = 0. Otherwise, assume m < n.

Suppose {e1, e2, · · · , em} is a basis of ker f , Extend this to a basis of the whole of U
to get {e1, e2, · · · , em, em+1, · · · , en}. To prove the theorem, we need to prove that
{f(em+1), f(em+2), · · · f(en)} is a basis of im(f).
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(i) First show that it spans im(f). Take y ∈ im(f). Thus ∃x ∈ U such that y = f(x).
Then

y = f(α1e1 + α2e2 + · · ·+ αnen),

since e1, · · · en is a basis of U . Thus

y = α1f(e1) + α2f(e2) + · · ·+ αmf(em) + αm+1f(em+1) + · · ·+ αnf(en).

The first m terms map to 0, since e1, · · · em is the basis of the kernel of f . Thus

y = αm+1f(em+1) + · · ·+ αnf(en).

(ii) To show that they are linearly independent, suppose

αm+1f(em+1) + · · ·+ αnf(en) = 0.

Then
f(αm+1em+1 + · · ·+ αnen) = 0.

Thus αm+1em+1 + · · ·+ αnen ∈ ker(f). Since {e1, · · · , em} span ker(f), there exist
some α1, α2, · · ·αm such that

αm+1em+1 + · · ·+ αnen = α1e1 + · · ·+ αmem.

But e1 · · · en is a basis of U and are linearly independent. So αi = 0 for all i. Then
the only solution to the equation αm+1f(em+1) + · · ·+ αnf(en) = 0 is αi = 0, and
they are linearly independent by definition.

Example. Calculate the kernel and image of f : R3 → R3, defined by f(x, y, z) =
(x+ y + z, 2x− y + 5z, x+ 2z).

First find the kernel: we’ve got the system of equations:

x+ y + z = 0

2x− y + 5z = 0

x+ 2z = 0

Note that the first and second equation add to give 3x+ 6z = 0, which is identical to the
third. Then using the first and third equation, we have y = −x− z = z. So the kernel is
any vector in the form (−2z, z, z) and is the span of (−2, 1, 1).

To find the image, extend the basis of ker(f) to a basis of the whole of R3: {(−2, 1, 1), (0, 1, 0), (0, 0, 1)}.
Apply f to this basis to obtain (0, 0, 0), (1,−1, 0) and (1, 5, 2). From the proof of the
rank-nullity theorem, we know that f(0, 1, 0) and f(0, 0, 1) is a basis of the image.

To get the standard form of the image, we know that the normal to the plane is parallel to
(1,−1, 0)×(1, 5, 2) ‖ (1, 1,−3). Since 0 ∈ im(f), the equation of the plane is x+y−3z = 0.
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1.3.4 Matrices

In the examples above, we have represented our linear maps by some object R such that
x′i = Rijxj. We call R the matrix for the linear map. In general, let α : Rn → Rm be a
linear map, and x′ = α(x).

Let {ei} be a basis of Rn. Then x = xjej for some xj. Then we get

x′ = α(xjej) = xjα(ej).

So we get that
x′i = [α(ej)]ixj.

We now define Aij = [α(ej)]i. Then x′i = Aijxj. We write

A = {Aij} =

A11 · · · A1n

... Aij
...

Am1 · · · Amn


Here Aij is the entry in the ith row of the jth column. We say that A is an m× n matrix,
and write x′ = Ax.

We see that the columns of the matrix are the images of the standard basis vectors under
the mapping α.

Example.

Examples

(i) In R2, consider a reflection in a line with an angle θ to the x axis. We know
that î 7→ cos 2θ̂i + sin 2θ̂j , with ĵ 7→ − cos 2θ̂j + sin 2θ̂i. Then the matrix is(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

(ii) In R3, as we’ve previously seen, a rotation by θ about the z axis is given by

R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


(iii) In R3, a reflection in plane with normal n̂ is given by Rij = δij − 2n̂in̂j. Written as

a matrix, we have 1− 2n̂2
1 −2n̂1n̂2 −2n̂1n̂3

−2n̂2n̂1 1− 2n̂2
2 −2n̂2n̂3

−2n̂3n̂1 −2n̂3n̂2 1− 2n̂2
3


(iv) Dilation (“stretching”) α : R3 → R3 is given by a map (x, y, z) 7→ (λx, µy, νz) for

some λ, µ, ν. The matrix is λ 0 0
0 µ 0
0 0 ν
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(v) Shear: Consider S : R3 → R3 that sheers in the x direction:

x

y

x x′
sheer in x direction

We have (x, y, z) 7→ (x+ λy, y, z). Then

S =

1 λ 0
0 1 0
0 0 1


Matrix Algebra

This part is mostly on a whole lot of definitions, saying what we can do with matrices
and classifying them into different types.

Definition 25 (Addition of matrices). Consider two linear maps α, β : Rn → Rm. The
sum of α and β is defined by

(α + β)(x) = α(x) + β(x)

In terms of the matrix, we have

(A+B)ijxj = Aijxj +Bijxj,

or

(A+B)ij = Aij +Bij.

Definition 26 (Scalar multiplication of matrices). Define (λα)x = λ[α(x)]. So (λA)ij =
λAij.

Definition 27 (Matrix multiplication). Consider maps α : R` → Rn and β : Rn → Rm.
The composition is βα : R` → Rm. Take x ∈ R` 7→ x′′ ∈ Rm. Then x′′ = (BA)x = Bx′,
where x′ = Ax. Using suffix notation, we have x′′i = (Bx′)i = bikx

′
k = BikAkjxj. But

x′′i = (BA)ijxj. So
(BA)ij = BikAkj.

Generally, an m× n matrix multiplied by an n× ` matrix gives an m× ` matrix. (BA)ij
is given by the ith row of B dotted with the jth column of A.

Note that the number of columns of B has to be equal to the number of rows of A for
multiplication to be defined. If ` = m as well, then both BA and AB make sense, but
AB 6= BA in general. In fact, they don’t even have to have the same dimensions.

Also, since function composition is associative, we get A(BC) = (AB)C.

24



Definition 28 (Transpose of matrix). If A is an m× n matrix, the transpose AT is an
n×m matrix defined by (AT )ij = Aji.

Proposition.

(i) (AT )T = A.

(ii) If x is a column vector


x1

x2

...
xn

, xT is a row vector (x1 x2 · · · xn).

(iii) (AB)T = BTAT since (AB)Tij = (AB)ji = AjkBki = BkiAjk
= (BT )ik(A

T )kj = (BTAT )ij.

Definition 29 (Hermitian conjugate). Define A† = (AT )∗. Similarly, (AB)† = B†A†.

Definition 30 (Symmetric matrix). A matrix is symmetric if AT = A.

Definition 31 (Hermitian matrix). A matrix is Hermitian if A† = A. (The diagonal of
a Hermitian matrix must be real).

Definition 32 (Anti/skew symmetric matrix). A matrix is anti-symmetric or skew
symmetric if AT = −A. The diagonals are all zero.

Definition 33 (Skew-Hermitian matrix). A matrix is skew-Hermitian if A† = −A.
The diagonals are pure imaginary.

Definition 34 (Trace of matrix). The trace of an n × n matrix A is the sum of the
diagonal. tr(A) = Aii.

Example. Consider the reflection matrix Rij = δij − 2n̂in̂j. We have tr(A) = Rii =
3− 2n̂ · n̂ = 3− 2 = 1.

Proposition. tr(BC) = tr(CB)

Proof. tr(BC) = BikCki = CkiBik = (CB)kk = tr(CB)

Definition 35 (Identity matrix). I = δij.

Decomposition of an n× n matrix

Any n× n matrix B can be split as a sum of symmetric and antisymmetric parts. Write

Bij =
1

2
(Bij +Bji)︸ ︷︷ ︸

Sij

+
1

2
(Bij −Bji)︸ ︷︷ ︸

Aij

.

We have Sij = Sji, so S is symmetric, while Aji = −Aij, and A is antisymmetric. So
B = S + A.
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Furthermore , we can decompose S into an isotropic part (a scalar multiple of the identity)
plus a trace-less part (i.e. sum of diagonal = 0). Write

Sij =
1

n
tr(S)δij︸ ︷︷ ︸

isotropic part

+ (Sij −
1

n
tr(S)δij)︸ ︷︷ ︸

Tij

.

We have tr(T ) = Tii = Sii − 1
n

tr(S)δii = tr(S)− 1
n

tr(S)(n) = 0.

Putting all these together,

B =
1

n
tr(B)I +

{
1

2
(B +BT )− 1

n
tr(B)I

}
+

1

2
(B −BT ).

In three dimensions, we can write the antisymmetric part A in terms of a single vector:
we have

A =

 0 a −b
−a 0 c
b −c 0


and we can consider

εijkωk =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


So if we have ω = (c, b, a), then Aij = εijkωk.

This decomposition can be useful in certain physical applications. For example, if the
matrix represents the stress of a system, different parts of the decomposition will correspond
to different types of stresses.

Matrix inverse

Definition 36 (Inverse of matrix). Consider an m× n matrix A and n×m matrices B
and C. If BA = I, then we say B is the left inverse of A. If AC = I, then we say C is
the right inverse of A. If A is square (n× n), then B = B(AC) = (BA)C = C, i.e. the
left and right inverses coincide. Both are denoted by A−1, the inverse of A. Therefore
we have

AA−1 = A−1A = I.

Note that not all square matrices have inverses. For example, the zero matrix clearly has
no inverse.

Definition 37 (Invertible matrix). If A has an inverse, then A is invertible.

Proposition. (AB)−1 = B−1A−1

Proof. (B−1A−1)(AB) = B−1(A−1A)B = B−1B = I.

Definition 38 (Orthogonal and unitary matrices). A real n× n matrix is orthogonal if
ATA = AAT = I, i.e. AT = A−1. A complex n× n matrix is unitary if U †U = UU † = I,
i.e. U † = U−1.
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Note that an orthogonal matrix A satisfies Aik(A
T
kj) = δij, i.e. AikAjk = δij. We can see

this as saying “the scalar product of two distinct rows is 0, and the scalar product of a
row with itself is 1”. Alternatively, the rows (and columns — by considering AT ) of an
orthogonal matrix form an orthonormal set.

Similarly, for a unitary matrix, UikU
†
kj = δij, i.e. uiku

∗
jk = u∗ikujk = δij. i.e. the rows are

orthonormal, using the definition of complex scalar product.

Example.

(i) The reflection in a plane is an orthogonal matrix. Since Rij = δij − 2ninj, We have

RikRjk = (δik − 2nink)(δjk − 2njnk)

= δikδjk − 2δjknink − 2δiknjnk + 2ninknjnk

= δij − 2ninj − 2njni + 4ninj(nknk)

= δij

(ii) The rotation is an orthogonal matrix. We could multiply out using suffix notation,
but it would be cumbersome to do so. Alternatively, denote rotation matrix by θ
about n̂ as R(θ, n̂). Clearly, R(θ, n̂)−1 = R(−θ, n̂). We have

Rij(−θ, n̂) = (cos θ)δij + ninj(1− cos θ) + εijknk sin θ

= (cos θ)δji + njni(1− cos θ)− εjiknk sin θ

= Rji(θ, n̂)

In other words, R(−θ, n̂) = R(θ, n̂)T . So R(θ, n̂)−1 = R(θ, n̂)T .

1.3.5 Determinants

Consider a linear map α : R3 → R3. The standard basis e1, e2, e3 is mapped to e′1, e
′
2, e
′
3

with e′i = Aei. Thus the unit cube formed by e1, e2, e3 is mapped to the parallelepiped
with volume

[e′1, e
′
2, e
′
3] = εijk(e

′
1)i(e

′
2)j(e

′
3)k

= εijkAi` (e1)`︸︷︷︸
δ1`

Ajm (e2)m︸ ︷︷ ︸
δ2m

Akn (e3)n︸ ︷︷ ︸
δ3n

= εijkAi1Aj2Ak3

We call this the determinant and write as

det(A) =

∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
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Permutations

To define the determinant for square matrices of arbitrary size, we first have to consider
permutations.

Definition 39 (Permutation). A permutation of a set S is a bijection ε : S → S.

Notation. Consider the set Sn of all permutations of 1, 2, 3, · · · , n. Sn contains n!
elements. Consider ρ ∈ Sn with i 7→ ρ(i). We write

ρ =

(
1 2 · · · n
ρ(1) ρ(2) · · · ρ(n)

)
.

Definition 40 (Fixed point). A fixed point of ρ is a k such that ρ(k) = k. e.g. in(
1 2 3 4
4 1 3 2

)
, 3 is the fixed point. By convention, we can omit the fixed point and write

as

(
1 2 4
4 1 2

)
.

Definition 41 (Disjoint permutation). Two permutations are disjoint if numbers moved

by one are fixed by the other, and vice versa. e.g.

(
1 2 4 5 6
5 6 1 4 2

)
=

(
2 6
6 2

)(
1 4 5
5 1 4

)
,

and the two cycles on the right hand side are disjoint. Disjoint permutations commute,
but in general non-disjoint permutations do not.

Definition 42 (Transposition and k-cycle).

(
2 6
6 2

)
is a 2-cycle or a transposition,

and we can simply write (2 6).

(
1 4 5
5 1 4

)
is a 3-cycle, and we can simply write (1 5 4).

(1 is mapped to 5; 5 is mapped to 4; 4 is mapped to 1)

Proposition. Any q-cycle can be written as a product of 2-cycles.

Proof. (1 2 3 · · · n) = (1 2)(2 3)(3 4) · · · (n− 1 n).

Definition 43 (Sign of permutation). The sign of a permutation ε(ρ) is (−1)r, where r
is the number of 2-cycles when ρ is written as a product of 2-cycles. If ε(ρ) = +1, it is an
even permutation. Otherwise, it is an odd permutation. Note that ε(ρσ) = ε(ρ)ε(σ) and
ε(ρ−1) = ε(ρ).

The proof that this is well-defined can be found in IA Groups.

Definition 44 (Levi-Civita symbol). The Levi-Civita symbol is defined by

εj1j2···jn =


+1 if j1j2j3 · · · jn is an even permutation of 1, 2, · · ·n
−1 if it is an odd permutation

0 if any 2 of them are equal

Clearly, ερ(1)ρ(2)···ρ(n) = ε(ρ).
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Definition 45 (Determinant). The determinant of an n× n matrix A is defined as:

det(A) =
∑
σ∈Sn

ε(σ)Aσ(1)1Aσ(2)2 · · ·Aσ(n)n,

or equivalently,
det(A) = εj1j2···jnAj11Aj22 · · ·Ajnn.

Proposition. ∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

Properties of determinants

Proposition. det(A) = det(AT ).

Proof. Take a single term Aσ(1)1Aσ(2)2 · · ·Aσ(n)n and let ρ be another permutation in Sn.
We have

Aσ(1)1Aσ(2)2 · · ·Aσ(n)n = Aσ(ρ(1))ρ(1)Aσ(ρ(2))ρ(2) · · ·Aσ(ρ(n))ρ(n)

since the right hand side is just re-ordering the order of multiplication. Choose ρ = σ−1

and note that ε(σ) = ε(ρ). Then

det(A) =
∑
ρ∈Sn

ε(ρ)A1ρ(1)A2ρ(2) · · ·Anρ(n) = det(AT ).

Proposition. If matrix B is formed by multiplying every element in a single row of A by
a scalar λ, then det(B) = λ det(A). Consequently, det(λA) = λn det(A).

Proof. Each term in the sum is multiplied by λ, so the whole sum is multiplied by λn.

Proposition. If 2 rows (or 2 columns) of A are identical, the determinant is 0.

Proof. wlog, suppose columns 1 and 2 are the same. Then

det(A) =
∑
σ∈Sn

ε(σ)Aσ(1)1Aσ(2)2 · · ·Aσ(n)n.

Now write an arbitrary σ in the form σ = ρ(1 2). Then ε(σ) = ε(ρ)ε((1 2)) = −ε(ρ). So

det(A) =
∑
ρ∈Sn

−ε(ρ)Aρ(2)1Aρ(1)2Aρ(3)3 · · ·Aρ(n)n.

But columns 1 and 2 are identical, so Aρ(2)1 = Aρ(2)2 and Aρ(1)2 = Aρ(1)1. So det(A) =
− det(A) and det(A) = 0.

Proposition. If 2 rows or 2 columns of a matrix are linearly dependent, then the
determinant is zero.
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Proof. Suppose in A, (column r) + λ(column s) = 0. Define

Bij =

{
Aij j 6= r

Aij + λAis j = r
.

Then det(B) = det(A) + λ det(matrix with column r = column s) = det(A). Then we
can see that the rth column of B is all zeroes. So each term in the sum contains one zero
and det(A) = det(B) = 0.

Even if we don’t have linearly dependent rows or columns, we can still run the exact same
proof as above, and still get that det(B) = det(A). Linear dependence is only required to
show that det(B) = 0. So in general, we can add a linear multiple of a column (or row)
onto another column (or row) without changing the determinant.

Proposition. Given a matrix A, if B is a matrix obtained by adding a multiple of a
column (or row) of A to another column (or row) of A, then detA = detB.

Corollary. Swapping two rows or columns of a matrix negates the determinant.

Proof. We do the column case only. Let A = (a1 · · · ai · · · aj · · · an). Then

det(a1 · · · ai · · · aj · · · an) = det(a1 · · · ai + aj · · · aj · · · an)

= det(a1 · · · ai + aj · · · aj − (ai + aj) · · · an)

= det(a1 · · · ai + aj · · · − ai · · · an)

= det(a1 · · · aj · · · − ai · · · an)

= − det(a1 · · · aj · · · ai · · · an)

Alternatively, we can prove this from the definition directly, using the fact that the sign
of a transposition is −1 (and that the sign is multiplicative).

Proposition. det(AB) = det(A) det(B).

Proof. First note that
∑

σ ε(σ)Aσ(1)ρ(1)Aσ(2)ρ(2) = ε(ρ) det(A), i.e. swapping columns (or
rows) an even/odd number of times gives a factor ±1 respectively. We can prove this by
writing σ = µρ.

Now

detAB =
∑
σ

ε(σ)(AB)σ(1)1(AB)σ(2)2 · · · (AB)σ(n)n

=
∑
σ

ε(σ)
n∑

k1,k2,··· ,kn

Aσ(1)k1Bk11 · · ·Aσ(n)knBknn

=
∑

k1,··· ,kn

Bk11 · · ·Bknn

∑
σ

ε(σ)Aσ(1)k1Aσ(2)k2 · · ·Aσ(n)kn︸ ︷︷ ︸
S
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Now consider the many different S’s. If in S, two of k1 and kn are equal, then S is a
determinant of a matrix with two columns the same, i.e. S = 0. So we only have to
consider the sum over distinct kis. Thus the kis are are a permutation of 1, · · ·n, say
ki = ρ(i). Then we can write

detAB =
∑
ρ

Bρ(1)1 · · ·Bρ(n)n

∑
σ

ε(σ)Aσ(1)ρ(1) · · ·Aσ(n)ρ(n)

=
∑
ρ

Bρ(1)1 · · ·Bρ(n)n(ε(ρ) detA)

= detA
∑
ρ

ε(ρ)Bρ(1)1 · · ·Bρ(n)n

= detA detB

Corollary. If A is orthogonal, detA = ±1.

Proof.

AAT = I

detAAT = det I

detA detAT = 1

(detA)2 = 1

detA = ±1

Corollary. If U is unitary, | detU | = 1.

Proof. We have detU † = (detUT )∗ = det(U)∗. Since UU † = I, we have det(U) det(U)∗ =
1.

Proposition. In R3, orthogonal matrices represent either a rotation (det = 1) or a
reflection (det = −1).

Minors and Cofactors

Definition 46 (Minor and cofactor). For an n × n matrix A, define Aij to be the
(n− 1)× (n− 1) matrix in which row i and column j of A have been removed.

The minor of the ijth element of A is Mij = detAij

The cofactor of the ijth element of A is ∆ij = (−1)i+jMij.

Notation. We use ¯ to denote a symbol which has been missed out of a natural sequence.

Example. 1, 2, 3, 5 = 1, 2, 3, 4̄, 5.

The significance of these definitions is that we can use them to provide a systematic way
of evaluating determinants. We will also use them to find inverses of matrices.
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Theorem 11 (Laplace expansion formula). For any particular fixed i,

detA =
n∑
j=1

Aji∆ji.

Proof.

detA =
n∑

ji=1

Ajii

n∑
j1,··· ,ji,···jn

εj1j2···jnAj11Aj22 · · ·Ajii · · ·Ajnn

Let σ ∈ Sn be the permutation which moves ji to the ith position, and leave everything
else in its natural order, i.e.

σ =

(
1 · · · i i+ 1 i+ 2 · · · ji − 1 ji ji + 1 · · · n
1 · · · ji i i+ 1 · · · ji − 2 ji − 1 ji + 1 · · · n

)
if ji > i, and similarly for other cases. To perform this permutation, |i− ji| transpositions
are made. So ε(σ) = (−1)i−ji .

Now consider the permutation ρ ∈ Sn

ρ =

(
1 · · · · · · j̄i · · · n
j1 · · · j̄i · · · · · · jn

)
The composition ρσ reorders (1, · · · , n) to (j1, j2, · · · , jn). So ε(ρσ) = εj1···jn = ε(ρ)ε(σ) =
(−1)i−jiεj1···j̄i···jn . Hence the original equation becomes

detA =
n∑

ji=1

Ajii
∑

j1···j̄i···jn

(−1)i−jiεj1···j̄i···jnAj11 · · ·Ajii · · ·Ajnn

=
n∑

ji=1

Ajii(−1)i−jiMjii

=
n∑

ji=1

Ajii∆jii

=
n∑
j=1

Aji∆ji

Example. detA =

∣∣∣∣∣∣
2 4 2
3 2 1
2 0 1

∣∣∣∣∣∣. We can pick the first row and have

detA = 2

∣∣∣∣2 1
0 1

∣∣∣∣− 4

∣∣∣∣3 1
2 1

∣∣∣∣+ 2

∣∣∣∣3 2
2 0

∣∣∣∣
= 2(2− 0)− 4(3− 2) + 2(0− 4)

= −8.

Alternatively, we can pick the second column and have

detA = −4

∣∣∣∣3 1
2 1

∣∣∣∣+ 2

∣∣∣∣2 2
2 1

∣∣∣∣− 0

∣∣∣∣2 2
3 1

∣∣∣∣
= −4(3− 2) + 2(2− 4)− 0

= −8.
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In practical terms, we use a combination of properties of determinants with a sensible
choice of i to evaluate det(A).

Example. Consider

∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣. Row 1 - row 2 gives

∣∣∣∣∣∣
0 a− b a2 − b2

1 b b2

1 c c2

∣∣∣∣∣∣ = (a− b)

∣∣∣∣∣∣
0 1 a+ b
1 b b2

1 c c2

∣∣∣∣∣∣ .
Do row 2 - row 3. We obtain

(a− b)(b− c)

∣∣∣∣∣∣
0 1 a+ b
0 1 b+ c
1 c c2

∣∣∣∣∣∣ .
Row 1 - row 2 gives

(a− b)(b− c)(a− c)

∣∣∣∣∣∣
0 0 1
0 1 b+ c
1 c c2

∣∣∣∣∣∣ = (a− b)(b− c)(a− c).

33



1.4 Matrices and linear equations

1.4.1 Simple example, 2× 2

Consider the system of equations

A11x1 + A12x2 = d1 (a)

A21x1 + A22x2 = d2. (b)

We can write this as

Ax = d.

If we do (a)×A22−(b)×A12 and similarly the other way round, we obtain

(A11A22 − A12A21)x1 = A22d1 − A12d2

(A11A22 − A12A21)︸ ︷︷ ︸
detA

x2 = A11d2 − A21d1

Dividing by detA and writing in matrix form, we have(
x1

x2

)
=

1

detA

(
A22 −A12

−A21 A11

)(
d1

d2

)
On the other hand, given the equation Ax = d, if A−1 exists, then by multiplying both
sides on the left by A−1, we obtain x = A−1d.

Hence, we have constructed A−1 in the 2× 2 case, and shown that the condition for its
existence is detA 6= 0, with

A−1 =
1

detA

(
A22 −A12

−A21 A11

)

1.4.2 Inverse of an n× n matrix

For larger matrices, the formula for the inverse is similar, but slightly more complicated
(and costly to evaluate). The key to finding the inverse is the following:

Lemma.
∑
Aik∆jk = δij detA.

Proof. If i 6= j, then consider an n× n matrix B, which is identical to A except the jth
row is replaced by the ith row of A. So ∆jk of B = ∆jk of A, since ∆jk does not depend
on the elements in row j. Since B has a duplicate row, we know that

0 = detB =
n∑
k=1

Bjk∆jk =
n∑
k=1

Aik∆jk.

If i = j, then the expression is detA by the Laplace expansion formula.
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Theorem 12. If detA 6= 0, then A−1 exists and is given by

(A−1)ij =
∆ji

detA
.

Proof.

(A−1)ikAkj =
∆ki

detA
Akj =

δij detA

detA
= δij.

So A−1A = I.

The other direction is easy to prove. If detA = 0, then it has no inverse, since for any
matrix B, detAB = 0, and hence AB cannot be the identity.

Example. Consider the shear matrix Sλ =

1 λ 0
0 1 0
0 0 1

. We have detSλ = 1. The

cofactors are

∆11 = 1 ∆12 = 0 ∆13 = 0
∆21 − λ ∆22 = 1 ∆23 = 0
∆31 = 0 ∆32 = 0 ∆33 = 1

So S−1
λ =

1 −λ 0
0 1 0
0 0 1

.

How many arithmetic operations are involved in calculating the inverse of an n × n
matrix? We just count multiplication operations since they are the most time-consuming.
Suppose that calculating detA takes fn multiplications. This involves n (n− 1)× (n− 1)
determinants, and you need nmore multiplications to put them together. So fn = nfn−1+n.
So fn = O(n!) (in fact fn ≈ (1 + e)n!).

To find the inverse, we need to calculate n2 cofactors. Each is a n− 1 determinant, and
each takes O((n− 1)!). So the time complexity is O(n2(n− 1)!) = O(n · n!).

This is incredibly slow. Hence while it is theoretically possible to solve systems of linear
equations by inverting a matrix, sane people do not do so in general. Instead, we develop
certain better methods to solve the equations. In fact, the “usual” method people use to
solve equations by hand only has complexity O(n3), which is a much better complexity.

1.4.3 Homogeneous and inhomogeneous equations

Consider Ax = b where A is an n× n matrix, x and b are n× 1 column vectors.

Definition 47 (Homogeneous equation). If b = 0, then the system is homogeneous.
Otherwise, it’s inhomogeneous.
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Suppose detA 6= 0. Then there is a unique solution x = A−1b (x = 0 for homogeneous).

How can we understand this result? Recall that detA 6= 0 means that the columns of A
are linearly independent. The columns are the images of the standard basis, e′i = Aei. So
detA 6= 0 means that e′i are linearly independent and form a basis of Rn. Therefore the
image is the whole of Rn. This automatically ensures that b is in the image, i.e. there is a
solution.

To show that there is exactly one solution, suppose x and x′ are both solutions. Then
Ax = Ax′ = b. So A(x−x′) = 0. So x−x′ is in the kernel of A. But since the rank of A
is n, by the rank-nullity theorem, the nullity is 0. So the kernel is trivial. So x− x′ = 0,
i.e. x = x′.

Gaussian elimination

Consider a general solution

A11x1 + A12x2 + · · ·+ A1nxn = d1

A21x1 + A22x2 + · · ·+ A2nxn = d2

...

Am1x1 + Am2x2 + · · ·+ Amnxn = dm

So we have m equations and n unknowns.

Assume A11 6= 0 (if not, we can re-order the equations). We can use the first equation
to eliminate x1 from the remaining (m− 1) equations. Then use the second equation to
eliminate x2 from the remaining (m− 2) equations (if anything goes wrong, just re-order
until things work). Repeat.

We are left with

A11x1 + A12x2 + A13x3 + · · ·+ A1nxn = d1

A
(2)
22 x2 + A

(2)
23 x3 + · · ·+ A

(2)
2nxn = d2

...

A(r)
rr xr + · · ·+ A(r)

rnxn = dr

0 = d
(r)
r+1

...

0 = d(r)
m

Here A
(i)
ii 6= 0 (which we can achieve by re-ordering), and the superfix (i) refers to the

“version number” of the coefficient, e.g. A
(2)
22 is the second version of the coefficient of x2 in

the second row.

Let’s consider the different possibilities:

(i) r < m and at least one of d
(r)
r+1, · · · d

(r)
m 6= 0. Then a contradiction is reached. The

system is inconsistent and has no solution. We say it is overdetermined.
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Example. Consider the system

3x1 + 2x2 + x3 = 3

6x1 + 3x2 + 3x3 = 0

6x1 + 2x2 + 4x3 = 6

This becomes

3x1 + 2x2 + x3 = 3

0− x2 + x3 = −6

0− 2x2 + 2x3 = 0

And then

3x1 + 2x2 + x3 = 3

0− x2 + x3 = −6

0 = 12

We have d
(3)
3 = 12 = 0 and there is no solution.

(ii) If r = n ≤ m, and all d
(r)
r+i = 0. Then from the nth equation, there is a unique

solution for xn = d
(n)
n /A

(n)
nn , and hence for all xi by back substitution. This system

is determined.

Example.

2x1 + 5x2 = 2

4x1 + 3x2 = 11

This becomes

2x1 + 5x2 = 2

−7x2 = 7

So x2 = −1 and thus x1 = 7/2.

(iii) If r < n and d
(r)
r+i = 0, then xr+1, · · ·xn can be freely chosen, and there are infinitely

many solutions. System is under-determined. e.g.

x1 + x2 = 1

2x1 + 2x2 = 2

Which gives

x1 + x2 = 1

0 = 0

So x1 = 1− x2 is a solution for any x2.

37



In the n = m case, there are O(n3) operations involved, which is much less than inverting
the matrix. So this is an efficient way of solving equations.

This is also be related to the determinant. Consider the case where m = n and A is
square. Since row operations do not change the determinant and swapping rows give a
factor of (−1). So

detA = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 · · · · · · · · · A1n

0 A
(2)
22 · · · · · · · · · A

(n)
2n

...
...

. . .
...

...
...

0 0 · · · A
(r)
rr · · · A

(n)
rn

0 0 · · · 0 0 · · ·
...

...
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This determinant is an upper triangular one (all elements below diagonal are 0) and
the determinant is the product of its diagonal elements.

Hence if r < n (and d
(r)
i = 0 for i > r), then we have case (ii) and the detA = 0. If r = n,

then detA = (−1)kA11A
(2)
22 · · ·A

(n)
nn 6= 0.

1.4.4 Matrix rank

Consider a linear map α : Rn → Rm. Recall the rank r(α) is the dimension of the image.
Suppose that the matrix A is associated with the linear map. We also call r(A) the rank
of A.

Recall that if the standard basis is e1, · · · en, then Ae1, · · · , Aen span the image (but not
necessarily linearly independent).

Further, Ae1, · · · , Aen are the columns of the matrix A. Hence r(A) is the number of
linearly independent columns.

Definition 48 (Column and row rank of linear map). The column rank of a matrix is
the maximum number of linearly independent columns.

The row rank of a matrix is the maximum number of linearly independent rows.

Theorem 13. The column rank and row rank are equal for any m× n matrix.

Proof. Let r be the row rank of A. Write the biggest set of linearly independent rows as
vT1 ,v

T
2 , · · ·vTr or in component form vTk = (vk1, vk2, · · · , vkn) for k = 1, 2, · · · , r.

Now denote the ith row of A as rTi = (Ai1, Ai2, · · ·Ain).

Note that every row of A can be written as a linear combination of the v’s. (If ri cannot
be written as a linear combination of the v’s, then it is independent of the v’s and v is
not the maximum collection of linearly independent rows) Write

rTi =
r∑

k=1

Cikv
T
k .

For some coefficients Cik with 1 ≤ i ≤ m and 1 ≤ k ≤ r.
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Now the elements of A are

Aij = (ri)
T
j =

r∑
k=1

Cik(vk)j,

or 
A1j

A2j

...
Amj

 =
r∑

k=1

vkj


C1k

C2k

...
Cmk


So every column of A can be written as a linear combination of the r column vectors ck.
Then the column rank of A ≤ r, the row rank of A.

Apply the same argument to AT to see that the row rank is ≤ the column rank.

1.4.5 Homogeneous problem Ax = 0

We restrict our attention to the square case, i.e. number of unknowns = number of
equations. Here A is an n× n matrix. We want to solve Ax = 0.

First of all, if detA 6= 0, then A−1 exists and x−1 = A−10 = 0, which is the unique
solution. Hence if Ax = 0 with x 6= 0, then detA = 0.

Geometrical interpretation

We consider a 3× 3 matrix

A =

rT1
rT2
rT3


Ax = 0 means that ri ·x = 0 for all i. Each equation ri ·x = 0 represents a plane through
the origin. So the solution is the intersection of the three planes.

There are three possibilities:

(i) If detA = [r1, r2, r3] 6= 0, span{r1, r2, r3} = R3 and thus r(A) = 3. By the rank-
nullity theorem, n(A) = 0 and the kernel is {0}. So x = 0 is the unique solution.

(ii) If detA = 0, then dim(span{r1, r2, r3}) = 1 or 2.

(a) If rank = 2, wlog assume r1, r2 are linearly independent. So x lies on the
intersection of two planes x · r1 = 0 and x · r2 = 0, which is the line {x ∈ R3 :
x = λr1 × r2} (Since x lies on the intersection of the two planes, it has to be
normal to the normals of both planes). All such points on this line also satisfy
x · r3 = 0 since r3 is a linear combination of r1 and r2. The kernel is a line,
n(A) = 1.

(b) If rank = 1, then r1, r2, r3 are parallel. So x · r1 = 0⇒ x · r2 = x · r3 = 0. So
all x that satisfy x · r1 = 0 are in the kernel, and the kernel now is a plane.
n(A) = 2.

(We also have the trivial case where r(A) = 0, we have the zero mapping and the kernel is
R3)
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Linear mapping view of Ax = 0

In the general case, consider a linear map α : Rn → Rn x 7→ x′ = Ax. The kernel
k(A) = {x ∈ Rn : Ax = 0} has dimension n(A).

(i) If n(A) = 0, then A(e1), A(e2), · · · , A(en) is a linearly independent set, and r(A) =
n.

(ii) If n(A) > 0, then the image is not the whole of Rn. Let {ui}, i = 1, · · · , n(A)

be a basis of the kernel, i.e. so given any solution to Ax = 0, x =

n(A)∑
i=1

λiui for

some λi. Extend {ui} to be a basis of Rn by introducing extra vectors ui for
i = n(A) + 1, · · · , n. The vectors A(ui) for i = n(A) + 1, · · · , n form a basis of the
image.

1.4.6 General solution of Ax = d

Finally consider the general equation Ax = d, where A is an n× n matrix and x,d are
n× 1 column vectors. We can separate into two main cases.

(i) det(A) 6= 0. So A−1 exists and n(A) = 0, r(A) = n. Then for any d ∈ Rn, a unique
solution must exists and it is x = A−1d.

(ii) det(A) = 0. Then A−1 does not exist, and n(A) > 0, r(A) < n. So the image of A
is not the whole of Rn.

(a) If d 6∈ imA, then there is no solution (by definition of the image)

(b) If d ∈ imA, then by definition there exists at least one x such that Ax = d.
The general solution of Ax = d can be written as x = x0 + y, where x0 is a
particular solution (i.e. Ax0 = d), and y is any vector in kerA (i.e. Ay = 0).
(cf. Isomorphism theorem)

If n(A) = 0, then y = 0 only, and then the solution is unique (i.e. case (i)). If
n(A) > 0 , then {ui}, i = 1, · · · , n(A) is a basis of the kernel. Hence

y =

n(A)∑
j=1

µjuj,

so

x = x0 +

n(A)∑
j=1

µjuj

for any µj, i.e. there are infinitely many solutions.

Example. (
1 1
a 1

)(
x1

x2

)
=

(
1
b

)
40



We have detA = 1− a. If a 6= 1, then A−1 exists and

A−1 =
1

1− a
=

1

1− a

(
1 −1
−a 1

)
.

Then

x =
1

1− a

(
1− b
−a+ b

)
.

If a = 1, then

Ax =

(
x1 + x2

x1 + x2

)
= (x1 + x2)

(
1
1

)
.

So imA = span

{(
1
1

)}
and kerA = span

{(
1
−1

)}
. If b 6= 1, then

(
1
b

)
6∈ imA and

there is no solution. If b = 1, then

(
1
b

)
∈ imA.

We find a particular solution of

(
1
0

)
. So The general solution is

x =

(
1
0

)
+ λ

(
1
−1

)
.

Example. Find the general solution ofa a b
b a a
a b a

xy
z

 =

1
c
1


We have detA = (a− b)2(2a+ b). If a 6= b and b 6= −2a, then the inverse exists and there
is a unique solution for any c. Otherwise, the possible cases are

(i) a = b, b 6= −2a. So a 6= 0. The kernel is the plane x + y + z = 0 which is

span


−1

1
0

 ,

−1
0
1

 We extend this basis to R3 by adding

1
0
0

.

So the image is the span of

aa
a

 =

1
1
1

. Hence if c 6= 1, then

1
c
1

 is not in the

image and there is no solution. If c = 1, then a particular solution is

 1
a

0
0

 and the

general solution is

x =

 1
a

0
0

+ λ

−1
1
0

+ µ

−1
0
1
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(ii) If a 6= b and b = −2a, then a 6= 0. The kernel satisfies

x+ y − 2z = 0

−2x+ y + z = 0

x− 2y + z = 0

This can be solved to give x = y = z, and the kernel is span


1

1
1

. We add1
0
0

 and

0
0
1

 to form a basis of R3. So the image is the span of

 1
−2
1

 ,

−2
1
1

.

If

1
c
1

 is in the image, then

1
c
1

 = λ

 1
−2
1

+ µ

−2
1
1

 .

Then the only solution is µ = 0, λ = 1, c = −2. Thus there is no solution if c 6= −2,

and when c = −2, pick a particular solution

 1
a

0
0

 and the general solution is

x =

 1
a

0
0

+ λ

1
1
1


(iii) If a = b and b = −2a, then a = b = 0 and kerA = R3. So there is no solution for

any c.
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Chapter 2

Particle Dynamics
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2.1 Introduction

Ever since Newton invented calculus, mathematics is becoming more and more important
in physics. Physicists seek to describe the universe in a few equations, and derive everyday
(physical) phenomena as mathematical consequences of these equations.

In this course, we will start with Newton’s laws of motion and use it to derive a lot of
physical phenomena, including planetary orbits, centrifugal forces1 and the motion of
rotating bodies.

The important thing to note is that we can “prove” all these phenomena just under the
assumption that Newton’s laws are correct (plus the formulas for, say, the strength of
the gravitational force). We are just doing mathematics here. We don’t need to do any
experiments to obtain the results (of course, we need experiments to verify that Newton’s
laws are indeed the equations that describe this universe).

However, it turns out that Newton was wrong. While his theories were accurate for most
everyday phenomena, they weren’t able to adequately describe electromagnetism. This
lead to Einstein discovering special relativity. Special relativity is also required to
describe motion that is very fast. We will have a brief introduction to special relativity at
the end of the course.

1Yes, they exist.
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2.2 Newtonian dynamics of particles

Newton’s equations describe the motion of a (point) particle.

Definition 49 (Particle). A particle is an object of insignificant size, hence it can be
regarded as a point. It has a mass m > 0, and an electric charge q.

Its position at time t is described by its position vector, r(t) or x(t) with respect to an
origin O.

Depending on context, different things can be considered as particles. We could consider
an electron to be a point particle, even though it is more accurately described by the laws
of quantum mechanics than those of Newtonian mechanics. If we are studying the orbit
of planets, we can consider the Sun and the Earth to be particles.

An important property of a particle is that it has no internal structure. It can be
completely described by its position, momentum, mass and electric charge. For example,
if we model the Earth as a particle, we will have to ignore its own rotation, temperature
etc.

If we want to actually describe a rotating object, we usually consider it as a collection of
point particles connected together, and apply Newton’s law to the individual particles.

As mentioned above, the position of a particle is described by a position vector. This
requires us to pick an origin of the coordinate system, as well as an orientation of the
axes. Each choice is known as a frame of reference.

Definition 50 (Frame of reference). A frame of reference is a choice of coordinate
axes for r.

We don’t impose many restrictions on the choice of coordinate axes. They can be fixed,
moving, rotating, or even accelerating.

Using the position vector r, we can define various interesting quantities which describe
the particle.

Definition 51 (Velocity). The velocity of the particle is

v = ṙ =
dr

dt
.

Definition 52 (Acceleration). The acceleration of the particle is

a = v̇ = r̈ =
d2r

dt2
.

Definition 53 (Momentum). The momentum of a particle is

p = mv = mṙ.

m is the inertial mass of the particle, and measures its reluctance to accelerate, as
described by Newton’s second law.
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2.2.1 Newton’s laws of motion

We will first state Newton’s three laws of motion, and then discuss them individually.

Law (Newton’s First Law of Motion). A body remains at rest, or moves uniformly in a
straight line, unless acted on by a force. (This is in fact Galileo’s Law of Inertia)

Law (Newton’s Second Law of Motion). The rate of change of momentum of a body is
equal to the force acting on it (in both magnitude and direction).

Law (Newton’s Third Law of Motion). To every action there is an equal and opposite
reaction: the forces of two bodies on each other are equal and in opposite directions.

The first law might seem redundant given the second if interpreted literally. According to
the second law, if there is no force, then the momentum doesn’t change. Hence the body
remains at rest or moves uniformly in a straight line.

So why do we have the first law? Historically, it might be there to explicitly counter
Aristotle’s idea that objects naturally slow down to rest. However, some (modern)
physicists give it an alternative interpretation:

Note that the first law isn’t always true. Take yourself as a frame of reference. When you
move around your room, things will seem like they are moving around (relative to you).
When you sit down, they stop moving. However, in reality, they’ve always been sitting
there still. On second thought, this is because you, the frame of reference, is accelerating,
not the objects. The first law only holds in frames that are themselves not accelerating.
We call these inertial frames.

Definition 54 (Inertial frames). Inertial frames are frames of references in which the
frames themselves are not accelerating. Newton’s Laws only hold in inertial frames.

Then we can take the first law to assert that inertial frames exists. Even though the Earth
itself is rotating and orbiting the sun, for most purposes, any fixed place on the Earth
counts as an inertial frame.

2.2.2 Galilean transformations

The goal of this section is to investigate inertial frames. We know that inertial frames are
not unique. Given an inertial frame, what other inertial frames can we obtain?

First of all, we can rotate our axes or move our origin. In particular, we can perform the
following operations:

– Translations of space:
r′ = r− r0

– Translations of time:
t′ = t− t0

– Rotation (and reflection):
r′ = Rr

with R ∈ O(3).
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These are not very interesting. They are simply symmetries of space itself.

The last possible transformation is uniform motion. Suppose that S is an inertial
frame. Then any other frame S ′ in uniform motion relative to S is also inertial:

S S ′

y

x

y′

x′

v

Assuming the frames coincide at t = 0, then

x′ = x− vt
y′ = y

z′ = z

t′ = t

Generally, the position vector transforms as

r′ = r− vt,

where v is the (constant) velocity of S ′ relative to S. The velocity and acceleration
transform as follows:

ṙ′ = ṙ− v

r̈′ = r̈

Definition 55 (Galilean boost). A Galilean boost is a change in frame of reference by

r′ = r− vt

t′ = t

for a fixed, constant v.

All these transformations together generate the Galilean group, which describes the
symmetry of Newtonian equations of motion.

Law (Galilean relativity). The principle of relativity asserts that the laws of physics
are the same in inertial frames.

This implies that physical processes work the same

– at every point of space

– at all times
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– in whichever direction we face

– at whatever constant velocity we travel.

In other words, the equations of Newtonian physics must have Galilean invariance.

Since the laws of physics are the same regardless of your velocity, velocity must be a
relative concept, and there is no such thing as an “absolute velocity” that all inertial
frames agree on.

However, all inertial frames must agree on whether you are accelerating or not (even
though they need not agree on the direction of acceleration since you can rotate your
frame). So acceleration is an absolute concept.

2.2.3 Newton’s Second Law

Newton’s second law is often written in the form of an equation.

Law. The equation of motion for a particle subject to a force F is

dp

dt
= F,

where p = mv = mṙ is the (linear) momentum of the particle. We say m is the (inertial)
mass of the particle, which is a measure of its reluctance to accelerate.

Usually, m is constant. Then
F = ma = mr̈.

Usually, F is specified as a function of r, ṙ and t. Then we have a second-order ordinary
differential equation for r.

To determine the solution, we need to specify the initial values of r and ṙ, i.e. the initial
position and velocity. The trajectory of the particle is then uniquely determined for all
future (and past) times.

In many problems the trajectories of the particle in 3 dimensional space can be reduced
to independent 1 dimensional trajectories as will be seen in the next section on projectile
motion.
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2.3 Projectile motion

Let’s examine the problem of a ball being thrown diagonally upwards. After the ball is
launched the only force acting on it is the force of gravity which we assume to be constant
and denote by the vertical vector −g. We also assume that there is no air, and thus no
wind that could cause the ball to curve. The motion of the ball is thus constrained to two
dimensions, despite moving in three-dimensional space.

We can therefore think of this as a 2D problem, where the ball starts at the origin at time
t = 0, and then moves along the trajectory shown in figure 2.1.

x

y

r(t)

y(t)

x(t)

v0
v0 sinα

v0 cosα

α

Figure 2.1: Trajectory of ball trown at angle, α to the horizontal.

The ball starts from the origin at time t = 0

x(0) = 0

y(0) = 0

After launch, the ball moves along the trajectory shown in blue. It is launched (thrown) at
an initial velocity v0 (in red), which is a vector pointing at an angle α from the horizontal.
Also in red, we have the initial velocities for the x and y directions, found via vector
decomposition:

ẋ(0) = v0 cosα

ẏ(0) = v0 sinα

Because there is no force acting on the ball in the x direction, this is the velocity it will
have in the x direction until it hits the ground.
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In blue, is an instance of the ball’s position vector, together with its x and y components,
all three dependent on time t. We can now integrate Newton’s 3nd law equations in each
component, First in the horizontal x direction we have:

ẋ(t) = ẋ(0) + axt = v0 cosα

x(t) = x(0) + ẋ(0)t+
1

2
axt

2 = (v0 cosα)t

And then in the vertical y direction:

ẏ(t) = ẏ(0) + ayt = v0 sinα− gt

y(t) = y(0) + ẏ(0)t+
1

2
ayt

2 = (v0 sinα)t− 1

2
gt2

This solution can be demonstrated by firing a golf ball straight up from a cart moving on
a rail. For an outside observer, the ball moves in a parabolic trajectory, and returns to
the launcher some time later, as the cart and the ball moved together at the constant x
velocity.

2.3.1 The shape of a projectile’s trajectory

We can write the equations above in terms of x, instead of t, by solving the x equation
for t

x(t) = (v0 cosα)t

t =
1

v0 cosα
x(t)

and then substituting in the y equation:

y(t) = (v0 sinα)t− 1

2
gt2

y(t) = (tanα)x(t)− g

2v2
0 cos2 α

x(t)2

In other words, the trajectory has the shape of a parabola.

2.3.2 Maximum height reached by a projectile

We can calculate the time, tp when the object reaches the maximum height (the apex of
the trajectory), by finding out when ẏ(t) is equal to zero.
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tp =
v0 sinα

g

In other words, the time to reach the peak height is simply the initial velocity in the y
direction, divided by the acceleration that opposes that motion. Using this we can then
find the highest point h that the projectile reaches:

h = y(tp) =
(v0 sinα)2

2g

2.3.3 Horizontal distance travelled by a projectile

First we calculate the time, ts, the object returns to earth, y = 0? Because the curve is
symmetric, ts is twice tp.

ts =
2v0 sinα

g

Now we can calculate the horizontal distance traveled, S.

S =
2v2

0 sinα cosα

g

But 2 sinα cosα = sin 2α via a trigonometric identity, so:

S =
v2

0 sin 2α

g

Note that if we want to maximize the horizontal distance travelled then the projectile
should be launched at an angle α = 45◦.

2.3.4 Example, A story about a girl in a tree

No girls were hurt in this thought experiment! Imagine a girl, Emily, sitting in a tree
above the ground. A short bit away a hunter, Kate, places a golf ball in a cannon aimed
directly at Emily (see dotted line in figure 2.2 below).
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x

y

x(t1)

1
2
gt21

x(t2)

1
2
gt22

v0
v0 sinα

v0 cosα
α

Emily

Kate

t1

t1

t2

t2

Figure 2.2: Kate gets Emily as she falls from a tree.

We already know that gravity will pull the golf ball down in a parabola such that it misses
Emily. The dotted line above shows how the ball would travel in the absence of gravity,
while the filled line shows the parabolic trajectory it would take on Earth. As we can see,
it falls a distance of 1

2
gt21 from the dotted line during a time interval t1 after being fired –

basic 1D kinematics.

Now suppose that as soon as Kate fires the cannon, Emily lets go and starts falling. Emily
will fall with exactly the same acceleration as the golf ball, and since they started falling
at the same time, the golf ball will hit poor Emily despite her attempt to flee. Had she
instead stayed where she was, all would be well!

Note that this fact is independent of the golf ball’s initial velocity, so long as it doesn’t
hit the ground before reaching Emily’s x coordinate.

High velocity or low velocity, the gravitational acceleration is the same regardless, and so
the ball and Emily will both fall the same vertical distance in a given amount of time.

For two practice problems on the projectile theme the reader should consider watching
by patrickJMT .
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2.4 Dimensional analysis

When considering physical theories, it is important to be aware that physical quantities
are not pure numbers. Each physical quantity has a dimension. Roughly speaking,
dimensions are what units represent, such as length, mass and time. In any equation
relating physical quantities, the dimensions must be consistent, i.e. the dimensions on
both sides of the equation must be equal.

For many problems in dynamics, the three basic dimensions are sufficient:

– length, L

– mass, M

– time, T

The dimensions of a physical quantity X, denoted by [X] are expressible uniquely in terms
of L, M and T . For example,

– [area] = L2

– [density] = L−3M

– [velocity] = LT−1

– [acceleration] = LT−2

– [force] = LMT−2 since the dimensions must satisfy the equation F = ma.

– [energy] = L2MT−2, e.g. consider E = mv2/2.

Physical constants also have dimensions, e.g. [G] = L3M−1T−2 by F = GMm/r2.

The only allowed operations on quantities with dimensions are sums and products (and
subtraction and division), and if we sum two terms, they must have the same dimension.
For example, it does not make sense to add a length with an area. More complicated
functions of dimensional quantities are not allowed, e.g. ex again makes no sense if x has
a dimension, since

ex = 1 + x+
1

2
x2 + · · ·

and if x had a dimension, we would be summing up terms of different dimensions.

2.4.1 Units

People use units to represent dimensional quantities. A unit is a convenient standard
physical quantity, e.g. a fixed amount of mass. In the SI system, there are base units
corresponding to the basics dimensions. The three we need are

– meter (m) for length

– kilogram (kg) for mass
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– second (s) for time

A physical quantity can be expressed as a pure number times a unit with the correct
dimensions, e.g.

G = 6.67× 10−11 m3 kg−1 s−2.

It is important to realize that SI units are chosen arbitrarily for historical reasons only.
The equation of physics must work in any consistent system of units. This is captured by
the fact that physical equations must be dimensionally consistent.

2.4.2 Scaling

We’ve had so many restrictions on dimensional quantities — equations must be dimen-
sionally consistent, and we cannot sum terms of different dimensions. However, this is
not a hindrance when developing new theories. In fact, it is a very useful tool. First of
all, it allows us to immediately rule out equations that do not make sense dimensionally.
More importantly, it allows us to guess the form of the equation we want.

Suppose we believe that a physical quantity Y depends on 3 other physical quantities
X1, X2, X3, i.e. Y = Y (X1, X2, X3). Let their dimensions be as follows:

– [Y ] = LaM bT c

– [Xi] = LaiM biT ci

Suppose further that we know that the relationship is a power law, i.e.

Y = CXp1

1 X
p2

2 X
p3

3 ,

where C is a dimensionless constant (i.e. a pure number). Since the dimensions must work
out, we know that

a = p1a1 + p2a2 + p3a3

b = p1b1 + p2b2 + p3b3

c = p1c1 + p2c2 + p3c3

for which there is a unique solution provided that the dimensions of X1, X2 and X3 are
independent. So just by using dimensional analysis, we can figure out the relation between
the quantities up to a constant. The constant can then be found experimentally, which is
much easier than finding the form of the expression experimentally.

However, in reality, the dimensions are not always independent. For example, we might
have two length quantities. More importantly, the situation might involve more than 3
variables, and we do not have a unique solution.

First consider a simple case — if X2
1X2 is dimensionless, then the relation between Y and

Xi can involve more complicated terms such as exp(X2
1X2), since the argument of exp is

now dimensionless.

In general, suppose we have many terms, and the dimensions of Xi are not independent.
We order the quantities so that the independent terms [X1], [X2], [X3] are at the front.
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For each of the remaining variables, form a dimensionless quantity λi = XiX
q1
1 X

q2
2 X

q3
3 .

Then the relationship must be of the form

Y = f(λ4, λ5, · · · )Xp1

1 X
p2

2 X
p3

3 .

where f is an arbitrary function of the dimensionless variables.

Formally, this results is described by the Buckingham’s Pi theorem, but we will not
go into details.

Example (Simple pendulum).

m

`

d

We want to find the period P . We know that P could depend on

– mass m: [m] = M

– length `: [`] = L

– gravity g: [g] = LT−2

– initial displacement d: [d] = L

and of course [P ] = T .

We observe that m, `, g have independent dimensions, and with the fourth, we can form
the dimensionless group d/`. So the relationship must be of the form

P = f

(
d

l

)
mp1`p2gp3 ,

where f is a dimensionless function. For the dimensions to balance,

T = Mp1Lp2Lp3T−2p3 .

So p1 = 0, p2 = −p3 = 1/2. Then

P = f

(
d

`

)√
`

g
.

While we cannot find the exact formula, using dimensional analysis, we know that if both
` and d are quadrupled, then P will double.
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2.5 Forces

Force is a central concept in Newtonian mechanics. As described by Newton’s laws of
motion, forces are what causes objects to accelerate, according to the formula F = ma.
To completely specify the dynamics of a system, one only needs to know what forces act
on what bodies.

However, unlike in Star Wars, the force is given a secondary importance in modern
treatments of mechanics. Instead, the potential is what is considered to be fundamental,
with force being a derived concept. In quantum mechanics, we cannot even meaningfully
define forces.

Yet, there are certain systems that must be described with forces instead of potentials,
the most important of which is a system that involves friction of some sort.

2.5.1 Force and potential energy in one dimension

To define the potential, consider a particle of mass m moving in a straight line with
position x(t). Suppose F = F (x), i.e. it depends on position only. We define the potential
energy as follows:

Definition 56 (Potential energy). Given a force field F = F (x), we define the potential
energy to be a function V (x) such that

F = −dV

dx
.

or

V = −
∫
F dx.

V is defined up to a constant term. We usually pick a constant of integration such that
the potential drops to 0 at infinity.

Using the potential, we can write the equation of motion as

mẍ = −dV

dx
.

There is a reason why we call this the potential energy. We usually consider it to be an
energy of some sort. In particular, we define the total energy of a system to be

Definition 57 (Total energy). The total energy of a system is given by

E = T + V,

where V is the potential energy and T = 1
2
mẋ2 is the kinetic energy.

If the force of a system is derived from a potential, we can show that energy is conserved.
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Proposition. Suppose the equation of a particle satisfies

mẍ = −dV

dx
.

Then the total energy

E = T + V =
1

2
mẋ2 + V (x)

is conserved, i.e. Ė = 0.

Proof.

dE

dt
= mẋẍ+

dV

dx
ẋ

= ẋ

(
mẍ+

dV

dx

)
= 0

Example. Consider the harmonic oscillator, whose potential is given by

V =
1

2
kx2.

Then the equation of motion is
mẍ = −kx.

This is the case of, say, Hooke’s Law for a spring.

The general solution of this is

x(t) = A cos(ωt) +B sin(ωt)

with ω =
√
k/m.

A and B are arbitrary constants, and are related to the initial position and velocity by
x(0) = A, ẋ(0) = ωB.

For a general potential energy V (x), conservation of energy allows us to solve the problem
formally:

E =
1

2
mẋ2 + V (x)

Since E is a constant, from this equation, we have

dx

dt
= ±

√
2

m
(E − V (x))

t− t0 = ±
∫

dx√
2
m

(E − V (x))
.

To find x(t), we need to do the integral and then solve for x. This is usually not possible
by analytical methods, but we can approximate the solution by numerical methods.
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2.5.2 Motion in a potential

Given an arbitrary potential V (x), it is often difficult to completely solve the equations
of motion. However, just by looking at the graph of the potential, we can usually get a
qualitative understanding of the dynamics.

Example. Consider V (x) = m(x3 − 3x). Note that this can be dimensionally consistent
even though we add up x3 and −3x, if we declare “3” to have dimension L2.

We plot this as follows:

x

V

O 1 2−1−2

Suppose we release the particle from rest at x = x0. Then E = V (x0). We can consider
what happens to the particle for different values of x0.

– x0 = ±1: This is an equilibrium and the Particle stays there for all t.

– −1 < x0 < 2: The particle does not have enough energy to escape the well. So it
oscillates back and forth in potential well.

– x0 < −1: The particle falls to x = −∞.

– x0 > 2: The particle has enough energy to overshoot the well and continues to
x = −∞.

– x0 = 2: This is a special case. Obviously, the particle goes towards x = −1. But
how long does it take, and what happens next? Here we have E = 2m. We noted
previously

t− t0 = −
∫

dx√
2
m

(E − V (x))
.

Let x = −1 + ε(t). Then

2

m
(E − V (x)) = 4− 2(−1 + ε)3 + 6(−1 + ε)

= 6ε2 − 2ε3.

So

t− t0 = −
∫ ε

3

dε′√
6ε2 − 2ε3

We reach x = −1 when ε → 0. But for small ε, the integrand is approximately
∝ 1/ε, which integrates to ln ε→ −∞ as ε→ 0. So ε = 0 is achieved after infinite
time, i.e. it takes infinite time to reach ε = 0, or x = −1.
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Equilibrium points

In reality, most of the time, particles are not flying around wildly doing crazy stuff.
Instead, they stay at (or near) some stable point, and only move very little in a predictable
manner. We call these points equilibrium points.

Definition 58 (Equilibrium point). A particle is in equilibrium if it has no tendency
to move away. It will stay there for all time. Since mẍ = −V ′(x), the equilibrium points
are the stationary points of the potential energy, i.e.

V ′(x0) = 0.

Consider motion near an equilibrium point. We assume that the motion is small and we
can approximate V by a second-order Taylor expansion. Then we can write V as

V (x) ≈ V (x0) +
1

2
V ′′(x0)(x− x0)2.

Then the equation of motion is

mẍ = −V ′′(x0)(x− x0).

If V ′′(x0) > 0, then this is of the form of the harmonic oscillator. V has a local minimum
at x0, and we say the equilibrium point is stable. The particle oscillates with angular
frequency

ω =

√
V ′′(x0)

m
.

If V ′′(x0) < 0, then V has a local maximum at x0. In this case, the equilibrium point is
unstable, and the solution to the equation is

x− x0 ≈ Aeγt +Be−γt

for

γ =

√
−V ′′(x0)

m
.

For almost all initial conditions, A 6= 0 and the particle will diverge from the equilibrium
point, leading to a breakdown of the approximation.

If V ′′(x0) = 0, then further work is required to determine the outcome.

Example. Consider the simple pendulum.

m

`

d

θ
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Suppose that the pendulum makes an angle θ with the vertical. Then the energy is

E = T + V =
1

2
m`2θ̇2 −mg` cos θ.

Therefore V ∝ − cos θ. We have a stable equilibrium at θ = 0, and unstable equilibrium
at θ = π.

θ

V

−π π

mg`

−mg`

If E > mg`, then θ̇ never vanishes and the pendulum makes full circles.

If 0 < E < mg`, then θ̇ vanishes at θ = ±θ0 for some 0 < θ0 < π i.e. E = −mg` cos θ0.
The pendulum oscillates back and forth. It takes a quarter of a period to reach from θ = 0
to θ = θ0. Using the previous general solution, oscillation period P is given by

P

4
=

∫ θ0

0

=
dθ√

2E
m`2

+ 2g
`

cos θ
.

Since we know that E = −mg` cos θ0, we know that

P

4
=

√
`

g

∫ θ0

0

dδ√
2 cos θ − 2 cos θ0

.

The integral is difficult to evaluate in general, but for small θ0, we can use cos θ ≈ 1− 1
2
θ2.

So

P ≈ 4

√
`

g

∫ θ0

0

dθ√
θ2

0 − θ2
= 2π

√
`

g

and is independent of the amplitude θ0. This is of course the result for the harmonic
oscillator.

Force and potential energy in three dimensions

Everything looks nice so far. However, in real life, the world has (at least) three (spatial)
dimensions. To work with multiple dimensions, we will have to promote our quantities
into vectors.

Consider a particle of mass m moving in 3D. The equation of motion is now a vector
equation

mr̈ = F.

We’ll define the familiar quantities we’ve had.
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Definition 59 (Kinetic energy). We define the kinetic energy of the particle to be

T =
1

2
m|v|2 =

1

2
mṙ · ṙ.

If we want to know how it varies with time, we obtain

dT

dt
= mr̈ · ṙ = F · ṙ = F · v.

This is the power.

Definition 60 (Power). The power is the rate at which work is done on a particle by a
force. It is given by

P = F · v.
Definition 61 (Work done). The work done on a particle by a force is the change in
kinetic energy caused by the force. The work done on a particle moving from r1 = r(t1)
to r2 = r(t2) along a trajectory C is the line integral

W =

∫
C

F · dr =

∫ t2

t1

F · ṙ dt =

∫ t2

t1

P dt.

Usually, we are interested in forces that conserve energy. These are forces which can be
given a potential, and are known as conservative forces.

Definition 62 (Conservative force and potential energy). A conservative force is a
force field F(r) that can be written in the form

F = −∇V.

V is the potential energy function.

Proposition. If F is conservative, then the energy

E = T + V

=
1

2
m|v|2 + V (r)

is conserved. For any particle moving under this force, the work done is equal to the
change in potential energy, and is independent of the path taken between the end points.
In particular, if we travel around a closed loop, no work is done.

Proof.

dE

dt
=

d

dt

(
1

2
mṙ · ṙ + V

)
= mr̈ · ṙ +

∂V

∂xi

dxi
dt

= (mr̈ +∇V ) · ṙ
= (mr̈− F) · ṙ
= 0

So the energy is conserved. In this case, the work done is

W =

∫
C

F · dr = −
∫
C

(∇V ) · dr = V (r1)− V (r2).
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2.5.3 Central forces

While in theory the potential can take any form it likes, most of the time, our system has
spherical symmetry. In this case, the potential depends only on the distance from the
origin.

Definition 63 (Central force). A central force is a force with a potential V (r) that
depends only on the distance from the origin, r = |r|. Note that a central force can be
either attractive or repulsive.

When dealing with central forces, the following formula is often helpful:

Proposition. ∇r = r̂.

Intuitively, this is because the direction in which r increases most rapidly is r, and the
rate of increase is clearly 1. This can also be proved algebraically:

Proof. We know that
r2 = x2

1 + x2
2 + x2

3.

Then

2r
∂r

∂xi
= 2xi.

So
∂r

∂xi
=
xi
r

= (r̂)i.

Proposition. Let F = −∇V (r) be a central force. Then

F = −∇V = −dV

dr
r̂,

where r̂ = r/r is the unit vector in the radial direction pointing away from the origin.

Proof. Using the proof above,

(∇V )i =
∂V

∂xi
=

dV

dr

∂r

∂xi
=

dV

dr
(r̂)i

Since central forces have spherical symmetry, they give rise to an additional conserved
quantity called angular momentum.

Definition 64 (Angular momentum). The angular momentum of a particle is

L = r× p = mr× ṙ.

Proposition. Angular momentum is conserved by a central force.

Proof.
dL

dt
= mṙ× ṙ +mr× r̈ = 0 + r× F = 0.

where the last equality comes from the fact that F is parallel to r for a central force.
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In general, for a non-central force, the rate of change of angular momentum is the torque.

Definition 65 (Torque). The torque G of a particle is the rate of change of angular
momentum.

G =
dL

dt
= r× F.

Note that L and G depends on the choice of origin. For a central force, only the angular
momentum about the center of the force is conserved.

2.5.4 Gravity

We’ll now study an important central force — gravity. This law was discovered by Newton
and was able to explain the orbits of various planets. However, we will only study the
force and potential aspects of it, and postpone the study of orbits for a later time.

Before continuing the student may wish to view this by DrPhysicsA introducing
the concept of a gravitational field.

Law (Newton’s law of gravitation). If a particle of mass M is fixed at a origin, then a
second particle of mass m experiences a potential energy

V (r) = −GMm

r
,

where G ≈ 6.67× 10−11 m3 kg−1 s−2 is the gravitational constant.

The gravitational force experienced is then

F = −∇V = −GMm

r2
r̂.

Since the force is negative, particles are attracted to the origin.

The potential energy is a function of the masses of both the fixed mass M and the second
particle m. However, it is useful what the fixed mass M does with reference to the second
particle.

Definition 66 (Gravitaional potential and field). The gravitational potential is the
gravitational potential energy per unit mass. It is

Φg(r) = −GM
r
.

Note that potential is confusingly different from potential energy.

If we have a second particle, the potential energy is given by V = mΦg.

The gravitational field is the force per unit mass,

g = −∇Φg = −GM
r2

r̂.
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If we have many fixed masses Mi at points ri, we can add up their gravitational potential
directly. Then the total gravitational potential is given by

Φg(r) = −
∑
i

GMi

|r− ri|
.

Again, V = mΦg for a particle of mass m.

An important (mathematical) result about gravitational fields is that we can treat spherical
objects as point particles. In particular,

Proposition. The external gravitational potential of a spherically symmetric object of
mass M is the same as that of a point particle with the same mass at the center of the
object, i.e.

Φg(r) = −GM
r
.

The proof can be found in the Vector Calculus course.

Example. If you live on a spherical planet of mass M and radius R, and can move only
a small distance zLR above the surface, then

V (r) = V (R + z)

= −GMm

R + z

= −GMm

R

(
1− z

R
+ · · ·

)
≈ const. +

GMm

R2
z

= const. +mgz,

where g = GM/R2 ≈ 9.8 m s−2 for Earth. Usually we are lazy and just say that the
potential is mgz.

Example. How fast do we need to jump to escape the gravitational pull of the Earth? If
we jump upwards with speed v from the surface, then

E = T + V =
1

2
mv2 − GMm

R
.

After escape, we must have T ≥ 0 and V = 0. Since energy is conserved, we must have
E ≥ 0 from the very beginning. i.e.

v > vesc =

√
2GM

R
.

Inertial and gravitational mass

A careful reader would observe that “mass” appears in two unrelated equations:

F = mir̈
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and

F = −GMgmg

r2
r̂,

and they play totally different roles. The first is the inertial mass, which measures the
resistance to motion, while the second is the gravitational mass, which measures its
response to gravitational forces.

Conceptually, these are quite different. There is no a priori reason why these two should
be equal. However, experiment shows that they are indeed equivalent to each other, i.e.
mi = mg, with an accuracy of 10−12 or better.

This (philosophical) problem was only resolved when Einstein introduced his general
theory of relativity, which says that gravity is actually a fictitious force, which means
that the acceleration of the particle is independent of its mass.

We can further distinct the gravitational mass by “passive” and “active”, i.e. the amount
of gravitational field generated by a particle (M), and the amount of gravitational force
received by a particle (m), but they are still equal, and we end up calling all of them
“mass”.

2.5.5 Friction

At an atomic level, energy is always conserved. However, in many everyday processes,
this does not appear to be the case. This is because friction tends to take kinetic energy
away from objects.

In general, we can divide friction into dry friction and fluid friction.

Dry friction

When solid objects are in contact, a normal reaction force N (perpendicular to
the contact surface) prevents them from interpenetrating, while a frictional force F
(tangential to the surface) resists relative tangential motion (sliding or slipping).

N

F

mg

If the tangential force is small, it is insufficient to overcome friction and no sliding occurs.
We have static friction of

|F| ≤ µs|N|,

where µs is the coefficient of static friction.

When the external force on the object exceeds µs|N|, sliding starts, and we have a kinetic
friction of

|F| = µk|N|,
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where µk is the coefficient of kinetic friction.

These coefficients are measures of roughness and depend on the two surfaces involved.
For example, Teflon on Teflon has coefficient of around 0.04, while rubber on asphalt
has about 0.8, while a hypothetical perfectly smooth surface has coefficient 0. Usually,
µs > µk > 0.

Fluid drag

When a solid object moves through a fluid (i.e. liquid or gas), it experiences a drag force.

There are two important regimes.

(i) Linear drag: for small things in viscous fluids moving slowly, e.g. a single cell
organism in water, the friction is proportional to the velocity, i.e.

F = −k1v.

where v is the velocity of the object relative to the fluid, and k1 > 0 is a constant.
This k1 depends on the shape of the object. For example, for a sphere of radius R,
Stoke’s Law gives

k1 = 6πµR,

where µ is the viscosity of the fluid.

(ii) Quadratic drag: for large objects moving rapidly in less viscous fluid, e.g. cars or
tennis balls in air, the friction is proportional to the square of the velocity, i.e.

F = −k2|v|2v̂.

In either case, the object loses energy. The power exerted by the drag force is

F · v =

{
−k1|v|2

−k2|v|3

Example. Consider a projectile moving in a uniform gravitational field and experiencing
a linear drag force.

At t = 0, we throw the projectile with velocity u from x = 0.

The equation of motion is

m
dv

dt
= mg − kv.

We first solve for v, and then deduce x.

We use an integrating factor exp( k
m
t) to obtain

d

dt

(
ekt/mv

)
= ekt/mg

ekt/mv =
m

k
ekt/mg + c

v =
m

k
g + ce−kt/m
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Since v = u at t = 0, we get c = u− m
k
g. So

v = ẋ =
m

k
g +

(
u− m

k
g
)
e−kt/m.

Integrating once gives

x =
m

k
gt− m

k

(
u− m

k
g
)
e−kt/m + d.

Since x = 0 at t = 0. So
d =

m

k

(
u− m

k
g
)
.

So
x =

m

k
gt+

m

k

(
u− m

k
g
)

(1− e−kt/m).

In component form, let x = (x, y), u = (u cos θ, u sin θ), g = (0,−g). So

x =
mu

k
cos θ(1− e−kt/m)

y = −mgt
k

+
m

k

(
u sin θ +

mg

k

)
(1− e−kt/m).

We can characterize the strength of the drag force by the dimensionless constant ku/(mg),
with a larger constant corresponding to a larger drag force.

Effect of damping on small oscillations

We’ve previously seen that particles near a potential minimum oscillate indefinitely.
However, if there is friction in the system, the oscillation will damp out and energy is
continually lost. Eventually, the system comes to rest at the stable equilibrium.

Example. If a linear drag force is added to a harmonic oscillator, then the equation of
motion becomes

mẍ = −mω2x− kẋ,
where ω is the angular frequency of the oscillator in the absence of damping. Rewrite as

ẍ + 2γẋ + ω2x = 0,

where γ = k/2m > 0. Solutions are x = eλt, where

λ2 + 2γλ+ ω2 = 0,

or
λ = −γ ±

√
γ2 − ω2.

If γ > ω, then the roots are real and negative. So we have exponential decay. We call this
an overdamped oscillator.

If 0 < γ < ω, then the roots are complex with Re(λ) = −γ. So we have decaying
oscillations. We call this an underdamped oscillator.

For details, refer to Differential Equations.
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2.6 Orbits

The goal of this chapter is to study the orbit of a particle in a central force,

mr̈ = −∇V (r).

While the universe is in three dimensions, the orbit is confined to a plane. This is since
the angular momentum L = mr × ṙ is a constant vector, as we’ve previously shown.
Furthermore L · r = 0. Therefore, the motion takes place in a plane passing through the
origin, and perpendicular to L.

2.6.1 Polar coordinates in the plane

We choose our axes such that the orbital plane is z = 0. To describe the orbit, we
introduce polar coordinates (r, θ):

x = r cos θ, y = r sin θ.

Our object is to separate the motion of the particle into radial and angular components.
We do so by defining unit vectors in the directions of increasing r and increasing θ:

r̂ =

(
cos θ
sin θ

)
, θ̂ =

(
− sin θ
cos θ

)
.

x

y

r

r̂θ̂

θ

These two unit vectors form an orthonormal basis. However, they are not basis vectors in
the normal sense. The directions of these basis vectors depend on time. In particular, we
have

Proposition.

dr̂

dθ
=

(
− sin θ
cos θ

)
= θ̂

dθ̂

dθ
=

(
− cos θ
− sin θ

)
= −r̂.

Often, we want the derivative with respect to time, instead of θ. By the chain rule, we
have

dr̂

dt
= θ̇θ̂,

dθ̂

dt
= −θ̇r̂.
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We can now express the position, velocity and acceleration in this new polar basis. The
position is given by

r = rr̂.

Taking the derivative gives the velocity as

ṙ = ṙr̂ + rθ̇θ̂.

The acceleration is then

r̈ = r̈r̂ + ṙθ̇θ̂ + ṙθ̇θ̂ + rθ̈θ̂ − rθ̇2r̂

= (r̈ − rθ̇2)r̂ + (rθ̈ + 2ṙθ̇)θ̂.

Definition 67 (Radial and angular velocity). ṙ is the radial velocity, and θ̇ is the
angular velocity.

Example (Uniform motion in a circle). If we are moving in a circle, then ṙ = 0 and
θ̇ = ω = constant. So

ṙ = rωθ̂.

The speed is given by
v = |ṙ| = r|ω| = const

and the acceleration is
r̈ = −rω2r̂.

Hence in order to make a particle of mass m move uniformly in a circle, we must supply a
centripetal force mv2/r towards the center.

2.6.2 Motion in a central force field

Now let’s put in our central force. Since V = V (r), we have

F = −∇V =
dV

dr
r̂.

So Newton’s 2nd law in polar coordinates is

m(r̈ − rθ̇2)r̂ +m(rθ̈ + 2ṙθ̇)θ̂ = −dV

dr
r̂.

The θ component of this equation is

m(rθ̈ − 2ṙθ̇) = 0.

We can rewrite it as
1

r

d

dt
(mr2θ̇) = 0.
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Let L = mr2θ̇. This is the z component (and the only component) of the conserved
angular momentum L:

L = mr× ṙ

= mrr̂× (ṙr̂ + rθ̇θ̂)

= mr2θ̇ r̂× θ̂
= mr2θ̇ ẑ.

So the angular component tells us that L is constant, which is the conservation of angular
momentum.

However, a more convenient quantity is the angular momentum per unit mass:

Notation (Angular momentum per unit mass). The angular momentum per unit
mass is

h =
L

m
= r2θ̇ = const.

Now the radial (r) component of the equation of motion is

m(r̈ − rθ̇2) = −dV

dr
.

We eliminate θ̇ using r2θ̇ = h to obtain

mr̈ = −dV

dr
+
mh2

r3
= −dVeff

dr
,

where

Veff(r) = V (r) +
mh2

2r2
.

We have now reduced the problem to 1D motion in an (effective) potential — as studied
previously.

The total energy of the particle is

E =
1

2
m|ṙ|2 + V (r)

=
1

2
m(ṙ2 + r2θ̇2) + V (r)

(since ṙ = ṙr̂ + rθ̇θ̂, and r̂ and θ̂ are orthogonal)

=
1

2
mṙ2 +

mh2

2r2
+ V (r)

=
1

2
mṙ2 + Veff(r).

Example. Consider an attractive force following the inverse-square law (e.g. gravity).
Here

V = −mk
r
,
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for some constant k. So

Veff = −mk
r

+
mh2

2r2
.

We have two terms of opposite signs and different dependencies on r. For small r, the
second term dominates and Veff is large. For large r, the first term dominates. Then Veff

asymptotically approaches 0 from below.

r

Veff

Emin

r∗

The minimum of Veff is at

r∗ =
h2

k
, Emin = −mk

2

2h2
.

We have a few possible types of motion:

– If E = Emin, then r remains at r∗ and θ̇h/r2 is constant. So we have a uniform
motion in a circle.

– If Emin < E < 0, then r oscillates and ṙ = h/r2 does also. This is a non-circular,
bounded orbit.

We’ll now introduce a lot of (pointless) definitions:

Definition 68 (Periapsis, apoapsis and apsides). The points of minimum and
maximum r in such an orbit are called the periapsis and apoapsis. They are
collectively known as the apsides.

Definition 69 (Perihelion and aphelion). For an orbit around the Sun, the periapsis
and apoapsis are known as the perihelion and aphelion.

In particular

Definition 70 (Perigee and apogee). The perihelion and aphelion of the Earth are
known as the perigee and apogee.

– If E ≥ 0, then r comes in from ∞, reaches a minimum, and returns to infinity. This
is an unbounded orbit.

We will later show that in the case of motion in an inverse square force, the trajectories
are conic sections (circles, ellipses, parabolae and hyperbolae).
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Stability of circular orbits

We’ll now look at circular orbits, since circles are nice. Consider a general potential energy
V (r). We have to answer two questions:

– Do circular orbits exist?

– If they do, are they stable?

The conditions for existence and stability are rather straightforward. For a circular orbit,
r = r∗ = const for some value of h 6= 0 (if h = 0, then the object is just standing still!).
Since r̈ = 0 for constant r, we require

V ′eff(r∗) = 0.

The orbit is stable if r∗ is a minimum of Veff, i.e.

V ′′eff(r∗) > 0.

In terms of V (r), circular orbit requires

V ′(r∗) =
mh2

r3
∗

and stability further requires

V ′′(r∗) +
3mh2

r4
∗

= V ′′(r∗) +
3

r∗
V ′(r∗) > 0.

In terms of the radial force F (r) = −V ′(r), the orbit is stable if

F ′(r∗) +
3

r
F (r∗) < 0.

Example. Consider a central force with

V (r) = −mk
rp

for some k, p > 0. Then

V ′′(r) +
3

r
V ′(r) =

(
− p(p+ 1) + 3p

) mk
rp+2

= p(2− p) mk
rp+2

.

So circular orbits are stable for p < 2. This is illustrated by the graphs of Veff(r) for p = 1
and p = 3.

Veff

p = 1
p = 3
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2.6.3 Equation of the shape of the orbit

In general, we could determine r(t) by integrating the energy equation

E =
1

2
mṙ2 + Veff(r)

t = ±
√
m

2

∫
dr√

E − Veff(r)

However, this is usually not practical, because we can’t do the integral. Instead, it is
usually much easier to find the shape r(θ) of the orbit.

Still, solving for r(θ) is also not easy. We will need a magic trick — we introduce the new
variable

Notation.

u =
1

r
.

Then

ṙ =
dr

dθ
θ̇ =

dr

dθ

h

r2
= −hdu

dθ
,

and

r̈ =
d

dt

(
−hdu

dθ

)
= −hd2u

dθ2
θ̇ = −hd2u

dθ2

h

r2
= −h2u2 d2u

dθ2
.

This doesn’t look very linear with u2, but it will help linearizing the equation when we
put in other factors.

The radial equation of motion

mr̈ − mh2

r3
= F (r)

then becomes

Proposition (Binet’s equation).

−mh2u2

(
d2u

dθ2
+ u

)
= F

(
1

u

)
.

This still looks rather complicated, but observe that for an inverse square force, F (1/u) is
proportional to u2, and then the equation is linear!

In general, given an arbitrary F (r), we aim to solve this second order ODE for u(θ). If
needed, we can then work out the time-dependence via

θ̇ = hu2.

2.6.4 The Kepler problem

The Kepler problem is the study of the orbits of two objects interacting via a central force
that obeys the inverse square law. The goal is to classify the possible orbits and study
their properties. One of the most important examples of the Kepler problem is the orbit
of celestial objects, as studied by Kepler himself.
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Shapes of orbits

For a planet orbiting the sun, the potential and force are given by

V (r) =
mk

r
, F (r) = −mk

r2

with k = GM (for the Coulomb attraction of opposite charges, we have the same equation

with k = − Qq

4πε0m
).

Binet’s equation then becomes linear, and

d2u

dθ2
+ u =

k

h2
.

We write the general solution as

u =
k

h2
+ A cos(θ − θ0),

where A ≥ 0 and θ0 are arbitrary constants.

If A = 0, then u is constant, and the orbit is circular. Otherwise, u reaches a maximum at
θ = θ0. This is the periapsis. We now re-define polar coordinates such that the periapsis
is at θ = 0. Then

Proposition. The orbit of a planet around the sun is given by

r =
`

1 + e cos θ
, (∗)

with ` = h2/k and e = Ah2/k. This is the polar equation of a conic, with a focus (the
sun) at the origin.

Definition 71 (Eccentricity). The dimensionless parameter e ≥ 0 in the equation of orbit
is the eccentricity and determines the shape of the orbit.

We can rewrite (∗) in Cartesian coordinates with x = r cos θ and y = r sin θ. Then we
obtain

(1− e2)x2 + 2e`x+ y2 = `2. (†)
There are three different possibilities:

– Ellipse: (0 ≤ e < 1). r is bounded by

`

1 + e
≤ r ≤ `

1− e
.

(†) can be put into the equation of an ellipse centered on (−ea, 0),

(x+ ea)2

a2
+
y2

b2
= 1,

where a =
`

1− e2
and b =

`√
1− e2

≤ a.
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ae

b

a

`
O

a and b are the semi-major and semi-minor axis. ` is the semi-latus rectum. One
focus of the ellipse is at the origin. If e = 0, then a = b = ` and the ellipse is a
circle.

– Hyperbola: (e > 1). For e > 1, r →∞ as θ → ±α, where α = cos−1(1/e) ∈ (π/2, π).
Then (†) can be put into the equation of a hyperbola centered on (ea, 0),

(x− ea)2

a2
− y2

b2
= 1,

with a =
`

e2 − 1
, b =

`√
e2 − 1

.

a
O

`

b

This corresponds to an unbound orbit that is deflected (scattered) by an attractive
force.

b is both the semi-minor axis and the impact parameter. It is the distance by
which the planet would miss the object if there were no attractive force.

The asymptote is y = b
a
(x− ea), or

x
√
e2 − 1− y = eb.

Alternatively, we can write the equation of the asymptote as

(x, y) ·
(√

e2 − 1

e
,−1

e

)
= b

or r · n = b, the equation of a line at a distance b from the origin.

– Parabola: (e = 1). Then (∗) becomes

r =
`

1 + cos θ
.

We see that r → ∞ as θ → ±π. (†) becomes the equation of a parabola, y2 =
`(`− 2x). The trajectory is similar to that of a hyperbola.
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Energy and eccentricity

We can figure out which path a planet follows by considering its energy.

E =
1

2
m(ṙ2 + r2θ̇2)− mk

r

=
1

2
mh2

((
du

dθ

)2

+ u2

)
−mku

Substitute u =
1

`
(1 + e cos θ) and ` =

h2

k
, and it simplifies to

E =
mk

2`
(e2 − 1),

which is independent of θ, as it must be.

Orbits are bounded for e < 1. This corresponds to the case E < 0. Unbounded orbits
have e > 1 and thus E > 0. A parabolic orbit has e = 1, E = 0, and is “marginally
bound”.

Note that the condition E > 0 is equivalent to |ṙ| >
√

2GM
r

= vesc, which means you have

enough kinetic energy to escape orbit.

Kepler’s laws of planetary motion

When Kepler first studied the laws of planetary motion, he took a telescope, observed
actual planets, and came up with his famous three laws of motion. We are now going to
derive the laws with pen and paper instead.

Law (Kepler’s first law). The orbit of each planet is an ellipse with the Sun at one focus.

Law (Kepler’s second law). The line between the planet and the sun sweeps out equal
areas in equal times.

Law (Kepler’s third law). The square of the orbital period is proportional to the cube of
the semi-major axis, or

P 2 ∝ a3.

We have already shown that Law 1 follows from Newtonian dynamics and the inverse-
square law of gravity. In the solar system, planets generally have very low eccentricity (i.e.
very close to circular motion), but asteroids and comets can have very eccentric orbits. In
other solar systems, even planets have have highly eccentric orbits. As we’ve previously
shown, it is also possible for the object to have a parabolic or hyperbolic orbit. However,
we tend not to call these “planets”.

Law 2 follows simply from the conservation of angular momentum: The area swept out
by moving dθ is dA = 1

2
r2 dθ (area of sector of circle). So

dA

dt
=

1

2
r2θ̇ =

h

2
= const.
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and is true for any central force.

Law 3 follows from this: the total area of the ellipse is A = πab = h
2
P (by the second law).

But b2 = a2(1− e2) and h2 = k` = ka(1− e2). So

P 2 =
(2π)2a4(1− e2)

ka(1− e2)
=

(2π)2a3

k
.

Note that the third law is very easy to prove directly for circular orbits. Since the radius
is constant, r̈ = 0. So the equations of motion give

−rθ̇2 = − k
r2

So
r3θ̇2 = k

Since θ̇ ∝ P−1, the result follows.
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2.7 Rotating frames

Recall that Newton’s laws hold only in inertial frames. However, sometimes, our frames
are not inertial. In this chapter, we are going to study a particular kind of non-inertial
frame — a rotating frame. An important rotating frame is the Earth itself, but there are
also other examples such as merry-go-rounds.

2.7.1 Motion in rotating frames

Now suppose that S is an inertial frame, and S ′ is rotating about the z axis with angular
velocity ω = θ̇ with respect to S.

Definition 72 (Angular velocity vector). The angular velocity vector of a rotating
frame is ω = ωẑ, where ẑ is the axis of rotation and ω is the angular speed.

First we wish to relate the basis vectors {ei} and {e′i} of S and S ′ respectively.

Consider a particle at rest in S′. From the perspective of S, its velocity is(
dr

dt

)
S

= ω × r,

where ω = ωẑ is the angular velocity vector (aligned with the rotation axis). This
formula also applies to the basis vectors of S ′.(

de′i
dt

)
S

= ω × e′i.

Now given a general time-dependent vector a, we can express it in the {e′i} basis as
follows:

a =
∑

a′i(t)e
′
i.

From the perspective of S ′, e′i is constant and the time derivative of a is given by(
da

dt

)
S′

=
∑ da′i

dt
e′i.

In S, however, e′i is not constant. So we apply the product rule to obtain the time
derivative of a: (

da

dt

)
S

=
∑ dai

dt
e′i +

∑
a′iω × e′i =

(
da

dt

)
S′

+ ω × a.

This key identity applies to all vectors and can be written as an operator equation:

Proposition. If S is an inertial frame, and S ′ is rotating relative to S with angular
velocity ω, then (

d

dt

)
S

=

(
d

dt

)
S′

+ ω × .

Applied to the position vector r(t) of a particle, it gives(
dr

dt

)
S

=

(
dr

dt

)
S′

+ ω × r.
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We can interpret this as saying that the difference in velocity measured in the two frames
is the relative velocity of the frames.

We apply this formula a second time, and allow ω to depend on time. Then we have(
d2r

dt2

)
S

=

((
d

dt

)
S′

+ ω×
)((

dr

dt

)
S′

+ ω × r

)
.

=

(
d2r

dt2

)
S′

+ 2ω ×
(

dr

dt

)
S′

+ ω̇ × r + ω × (ω × r)

Since S is inertial, Newton’s Second Law is

m

(
d2r

dt2

)
S

= F.

So

Proposition.

m

(
d2r

dt2

)
S′

= F− 2mω ×
(

dr

dt

)
S′
−mω̇ × r−mω × (ω × r).

Definition 73 (Fictious forces). The additional terms on the RHS of the equation of
motion in rotating frames are fictitious forces, and are needed to explain the motion
observed in S ′. They are

– Coriolis force: −2mω ×
(

dr
dt

)
S′
.

– Euler force: −mω̇ × r

– Centrifugal force: −mω × (ω × r).

In most cases, ω is constant and can neglect the Euler force.

2.7.2 The centrifugal force

What exactly does the centrifugal force do? Let ω = ωω̂, where |ω̂| = 1. Then

−mω × (ω × r) = −m
(
(ω · r)ω − (ω · ω)r

)
= mω2r⊥,

where r⊥ = r− (r · ω̂)ω̂ is the projection of the position on the plane perpendicular to ω.
So the centrifugal force is directed away from the axis of rotation, and its magnitude is
mω2 times the distance form the axis.

ω

r

r⊥
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Note that

r⊥ · r⊥ = r · r− (r · ω̂)2

∇(|r⊥|2) = 2r− 2(r · ω̂)ω̂ = 2r⊥.

So

−mω × (ω × r) = −∇
(
−1

2
mω2|r⊥|2

)
= −∇

(
−1

2
m|ω × r|2

)
.

Thus the centrifugal force is a conservative (fictitious) force.

On a rotating planet, the gravitational and centrifugal forces per unit mass combine to
make the effective gravity,

geff = g + ω2r⊥.

This gravity will not be vertically downwards. Consider a point P at latitude λ on the
surface of a spherical planet of radius R.

We construct orthogonal axes:

O

ω

P

ẑŷ

λ

with x̂ into the page. So ẑ is up, ŷ is North, and x̂ is East.

At P , we have

r = Rẑ

g = −gẑ
ω = ω(cosλŷ + sinλẑ)

So

geff = g + ω2r⊥

= −gẑ + ω2R cosλ(cosλẑ− sinλŷ)

= −ω2R cosλ sinλŷ − (g − ω2R cos2 λ)ẑ.

So the angle α between g and geff is given by

tanα =
ω2R cosλ sinλ

g − ω2R cos2 λ
.

This is 0 at the equator and the poles, and greatest when you are halfway between.
However, this is still tiny on Earth, and does not affect our daily life.
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2.7.3 The Coriolis force

The Coriolis force is a more subtle force. Writing v =
(

dr
dt

)
S′

, we can write the force as

F = −2mω × v.

Note that this has the same form as the Lorentz force caused by a magnetic field, and is
velocity-dependent. However, unlike the effects of a magnetic field, particles do not go
around in circles in a rotating frame, since we also have the centrifugal force in play.

Since this force is always perpendicular to the velocity, it does no work.

Consider motion parallel to the Earth’s surface. We only care about the effect of the
Coriolis force on the horizontal trajectory, and ignore the vertical component that is tiny
compared to gravity.

So we only take the vertical component of ω, ω sinλẑ. The horizontal velocity v = vxx̂+vyŷ
generates a horizontal Coriolis force:

−2mω sinλẑ× v = −2mω sinλ(vyx̂− vxŷ).

In the Northern hemisphere (0 < λ < π/2), this causes a deflection towards the right. In
the Southern Hemisphere, the deflection is to the left. The effect vanishes at the equator.

Note that only the horizontal effect of horizontal motion vanishes at the equator. The
vertical effects or those caused by vertical motion still exist.

Example. Suppose a ball is dropped from a tower of height h at the equator. Where
does it land?

In the rotating frame,
r̈ = g − 2ω × ṙ− ω × (ω × r).

We work to first order in ω. Then

r̈ = g − 2ω × ṙ +O(ω2).

Integrate wrt t to obtain

ṙ = gt− 2ω × (r− r0) +O(ω2),

where r0 is the initial position. We substitute into the original equation to obtain

r̈ = g − 2ω × gt+O(ω2).

(where some new ω2 terms are thrown into O(ω2)). We integrate twice to obtain

r = r0 +
1

2
gt2 − 1

3
ω × gt3 +O(ω2).

In components, we have g = (0, 0,−g), ω = (0, ω, 0) and r0 = (0, 0, R + h). So

r =

(
1

3
ωgt3, 0, R + h− 1

2
gt2
)

+O(ω2).
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So the particle hits the ground at t =
√

2h/g, and its eastward displacement is 1
3
wg
(

2h
g

)3/2

.

This can be understood in terms of angular momentum conservation in the non-rotating
frame. At the beginning, the particle has the same angular velocity with the Earth. As it
falls towards the Earth, to maintain the same angular momentum, the angular velocity
has to increase to compensate for the decreased radius. So it spins faster than the Earth
and drifts towards the East, relative to the Earth.

Example. Consider a pendulum that is free to swing in any plane, e.g. a weight on a
string. At the North pole, it will swing in a plane that is fixed in an inertial frame, while
the Earth rotates beneath it. From the perspective of the rotating frame, the plane of the
pendulum rotates backwards. This can be explained as a result of the Coriolis force.

In general, at latitude λ, the plane rotates rightwards with period 1 day
sinλ

.
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2.8 PROBLEMS

1. A block on a frictionless ramp

A block of mass m = 4kg is pressed with a horizontal force F against a frictionless ramp
of angle θ = 38◦.

Assuming the block is at rest on the ramp, answer the following:

a) What is the magnitude of the normal force exerted by the incline surface on the block?

b) What is the magnitude of the force F exerted on the block?

†166

2. Towing a sled

A mother tows her daughter on a sled on level ice. The friction between the sled and the
ice is negligible, and the tow rope makes an angle of θ to the horizontal. The combined
mass of the sled and the child is M . The sled has an acceleration in the horizontal
direction of magnitude a.

Express the following in terms of M , a, g, and θ.

a) The tension, T , in the rope.

b) The magnitude of the normal force, N , exerted by the ice on the sled.
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†167

3. Stacked blocks

Consider two blocks that are resting one on top of the other. The lower block has mass
m2 = 4.3 kg and is resting on a frictionless table. The upper block has mass m1 = 1.2 kg.
Suppose the coefficient of static friction between the two blocks is given by µs = 0.6.

a) A force of magnitude F is applied as shown in the left figure above. What is the
maximum force for which the upper block can be pushed horizontally so that the
two blocks move together without slipping?

b) A force of magnitude F as shown in the right figure above. What is the maximum
force for which the lower block can be pushed horizontally so that the two blocks
move together without slipping?’

†167

4. Tension in string

An archer is preparing to shoot an arrow. He grabs the center of the bowstring and pulls
straight back with a force of magnitude F = 118 N. The upper and lower halves of the
string form an angle α = 124◦ with respect to each other. Assume that the bowstring is
massless.
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a) What is the magnitude of the tension in the upper half of the bowstring?

†169

5. Rope between trees

Suppose a rope of mass m hangs between two trees. The ends of the rope are at the same
height and they make an angle θ with the trees.

Express in terms of m, g, and θ

a) The tension at the ends of the rope where it is connected to the trees?

b) The tension in the rope at a point midway between the trees?

†169

6. Blocks and ramp with friction

A block of mass m1 = 28 kg rests on a wedge of angle θ = 47◦ which is itself attached to
a table (the wedge does not move in this problem). An inextensible string is attached
to m1, passes over a frictionless pulley at the top of the wedge, and is then attached to
another block of mass m2 = 3 kg. The coefficient of kinetic friction between block 1 and
the plane is µ = 0.8. The string and wedge are long enough to ensure neither block hits
the pulley or the table in this problem, and you may assume that block 1 never reaches
the table. Take g to be 9.81 m/s2.
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The system is released from rest as shown above, at t = 0.

a) Find the magnitude of the acceleration of block 1 when it is released (in m/s2).

b) How many cm down the plane will block 1 have traveled when 0.47 s have elapsed?’

†169

7. Friction between blocks on a ramp

Two blocks with masses m1 and m2 such that m1Lm2 are connected by a massless
inextensible string and a massless pulley as shown in the figure below. The pulley is
rigidly connected to the top of a wedge with angle θ. The coefficient of friction between
the blocks is µ. The surface between the lower block and the wedge is frictionless. The
goal of this problem is to find the magnitude of the acceleration of each block.

What are the magnitudes of the acceleration of the two blocks? Express your answer in
terms of g, µ, m1, m2, and θ.

†170

8. Conical pendulum

A conical pendulum is constructed from a rope of length ` and negligible mass, which is
suspended from a fixed pivot attached to the ceiling. A small ball of mass m is attached to
the lower end of the rope. The ball moves in a circle with constant speed in the horizontal
plane, while the rope makes an angle β with respect to the vertical, as shown in the
diagram.
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a) Find the tension FT in the rope. Express your answer in terms of g, m, `, and β.

b) Find the period of the motion (how long does it take the ball to make one circle in
the horizontal plane). Express your answer in terms of g, m, `, and β.

†171

9. Stacked blocks 2

A block of mass mB = 15 kg is on top of a long slab of mass mS = 9 kg, and the slab
is on top of a horizontal table as shown. A horizontal force of magnitude F = 294 N is
applied on the block. As a result the block moves relative to the slab and the slab moves
relative to the table. There is friction between all surfaces. The coefficient of kinetic
friction between the block and the slab is µ1 = 0.7, and the coefficient of kinetic friction
between the slab and the table is µ2 = 0.1. Take g to be 9.81 m/s2, and enter your answer
to 3 significant figures.

a) What is the magnitude of the block’s acceleration?

b) What is the magnitude of the slab’s acceleration?
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†173

10. Rough surfaces

A block of mass m, starting from rest, slides down an inclined plane of length L and angle
θ with respect to the horizontal. The coefficient of kinetic friction between the block and
the inclined surface is µ1. At the bottom of the incline, the block slides along a horizontal
and rough surface with a coefficient of kinetic friction µ2. The goal of this problem is to
find out how far the block slides along the rough surface.

a) What is the work done by the friction force on the block while it is sliding down the
inclined plane?

b) What is the work done by the gravitational force on the block while it is sliding
down the inclined plane?

c) What is the kinetic energy of the block just at the bottom of the inclined plane?

d) After leaving the incline, the block slides along the rough surface until it comes to
rest. How far has it traveled?

Express your answers in terms of g, m, L, θ, µ1 and µ2.

†174

11. Oscillating block

Consider an ideal spring that has an unstretched length `0 = 3.1 m. Assume the spring
has a constant k = 36 N/m. Suppose the spring is attached to a mass m = 7 kg that lies
on a horizontal frictionless surface. The spring-mass system is compressed a distance of
x0 = 1.8 m from equilibrium and then released with an initial speed v0 = 3 m/s toward
the equilibrium position.
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a) What is the period of oscillation T for this system?

b) What is the position of the block as a function of time. Express your answer in
terms of t.

c) How long will it take for the mass to first return to the equilibrium position?

d) How long will it take for the spring to first become completely extended?

†175

12. Spring block with friction

A block of mass m = 4 kg slides along a horizontal table when it encounters the free
end of a horizontal spring of spring constant k = 16 N/m. The spring is initially on its
equilibrium state, defined when its free end is at x = 0 in the figure. Right before the
collision, the block is moving with a speed vi = 4 m/s. There is friction between the block
and the surface. The coefficient of friction is given by µ = 0.83. How far did the spring
compress when the block first momentarily comes to rest? Take g = 10 m/s2.

†177
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13. Half loop

A small bead of mass m is constrained to move along a frictionless track as shown. The
track consists of a semicircular portion of radius R followed by a straight part. At the
end of the straight portion there is a horizontal spring of spring constant k attached to a
fixed support. At the top of the circular portion of the track, the bead is pushed with an
unknown speed v0. The bead comes momentarily to rest after compressing the spring a
distance d. The magnitude of the acceleration due to the gravitational force is g.

What is the magnitude of the normal force exerted by the track on the bead at the point
A, a height R above the base of the track? Express your answer in terms of m, k, R, d,
and g but not in terms of v0.

†178

14. Full loop

An object of mass m is released from rest at a height h above the surface of a table. The
object slides along the inside of the loop-the-loop track consisting of a ramp and a circular
loop of radius R shown in the figure. Assume that the track is frictionless.

When the object is at the top of the loop it barely loses contact with the track. What
height h was the object released from? Express your answer in terms of some or all of the
given variables m, g, and R.
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†179

15. Vertical spring

A spring of negligible mass, spring constant k = 99 N/m, and natural length ` = 1.3 m
is hanging vertically. This is shown in the left figure below where the spring is neither
stretched nor compressed. In the central figure, a block of mass M = 2 kg is attached to
the free end. When equilibrium is reached (the block is at rest), the length of the spring
has increased by d1 with respect to `. We now lower the block by an additional d2 = 0.4 m
as shown in the right figure below. At t = 0 we release it (zero speed) and the block starts
to oscillate. Take g = 9.81 m/s2.

a) Find d1.

b) What is the frequency (Hz) of the oscillations?

c) What is the length of the spring when the block reaches its highest point during the
oscillations?

d) What is maximum speed of the block?

†180

16. Geosynchronous orbit

A satellite with a mass of ms = 3× 103 kg is in a planet’s equatorial plane in a circular
“synchronous” orbit. This means that an observer at the equator will see the satellite
being stationary overhead (see figure below). The planet has mass mp = 5.16× 1025 kg
and a day of length T = 0.7 earth days (1 earth day = 24 hours).
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a) How far from the center (in m) of the planet is the satellite?

b) What is the escape velocity (in km/sec) of any object that is at the same distance
from the center of the planet that you calculated in (a)?

†181

17. Bungee jumper

A bungee jumper jumps (with no initial speed) from a tall bridge attached to a light
elastic cord (bungee cord) of unstretched length L. The cord first straightens and then
extends as the jumper falls. This prevents her from hitting the water! Suppose that
the bungee cord behaves like a spring with spring constant k = 90 N/m. The bridge is
h = 100 m high and the jumper’s mass is m = 65 kg. Use g = 10 m/s2.

a) What is the maximum allowed length L of the unstretched bungee cord (in m) to
keep the jumper alive? (Assume that the spring constant doesn’t depend on L).

b) Before jumping, our jumper verified the spring constant of the cord. She lowered
herself very slowly from the bridge to the full extent of the cord and when she is
at rest she measured the distance to the water surface. What was the measured
distance (in m)?

92



†182

18. Loop, spring and bead

A bead of mass m slides without friction on a vertical hoop of radius R. The bead moves
under the combined action of gravity and a spring, with spring constant k, attached to
the bottom of the hoop. Assume that the equilibrium (relaxed) length of the spring is R.
The bead is released from rest at θ = 0 with a non-zero but negligible speed to the right.

a) What is the speed v of the bead when θ = 90◦?

b) What is the magnitude of the force the hoop exerts on the bead when θ = 90◦?

Express your answers in terms of m, R, k, and g.

†183

19. Moon

A planet has a single moon that is solely influenced by the gravitational interaction
between the two bodies. We will assume that the moon is moving in a circular orbit
around the planet and that the moon travels with a constant speed in that orbit. The
mass of the planet is mp = 3.03× 1025 kg. The mass of the moon is mm = 9.65× 1022 kg.
The radius of the orbit is R = 2.75× 108 m.

What is the period of the moon’s orbit around the planet in earth days (1 earth day = 24
hours).

†185

20. Double star system

Consider a double star system under the influence of the gravitational force between the
stars. Star 1 has mass m1 = 2.22× 1031 kg and Star 2 has mass m2 = 1.64× 1031 kg.
Assume that each star undergoes uniform circular motion about the center of mass of the
system (cm). In the figure below r1 is the distance between Star 1 and cm, and r2 is the
distance between Star 2 and cm.
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†185

21. Potential energy diagram

A body of mass m = 1 kg is moving along the x-axis. Its potential energy is given by the
function

U(x) = 2(x2 − 1)2

Note: The units were dropped for the numbers in the equation above. You should note
that 2 would carry units of J ·m−4 and 1 would carry units of m2.
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a) What is the x component of the force associated with the potential energy given by
U(x)? Give an expression in terms of x.

b) At what positive value of x (x > 0) in m, does the potential have a stable equilibrium
point?

c) Suppose the body starts with zero speed at x = 1.5 m. What is its speed (in m/s)
at x = 0 m and at x = −1 m?

†186

22. Earth drilling

A hole is drilled with smooth sides straight through the center of the earth to the other
side of the earth. The air is removed from this tube (and the tube doesn’t fill up with
water, liquid rock or iron from the core). An object is dropped into one end of the tube
and just reaches the opposite end. You can assume the earth is of uniform mass density.
You can neglect the amount of mass drilled out and the rotation of the earth.

a) The gravitational force on an object of mass m located inside the earth a distance
r < re from the center (re is the radius of the earth) is due only to the mass of
the earth that lies within a solid sphere of radius r. What is the magnitude of the
gravitational force as a function of the distance r from the center of the earth?

b) How long would it take for this object to reach the other side of the earth?

Express your answers in terms of the gravitational constant at the surface of earth g, m,
and re as needed.

Note: you do not need the mass of the earth me or the universal gravitation constant G
to answer this question but you will need to find an expression relating me and G to g
and re.

†188

23. Two blocks and a spring
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A system is composed of two non-identical blocks connected by a spring. The blocks slide
on a frictionless plane. The unstretched length of the spring is d. Initially block 2 is held
so that the spring is compressed to d/2 and block 1 is forced against a stop as shown in
the figure above. Block 2 is released.

Which of the following statements is true? (Note: more than one statement may be true.)

(a) When the position of block 2 is x2 > d, the center of mass of the system is accelerating
to the right.
(b) When the position of block 2 is x2 > d, the center of mass of the system is moving at
a constant speed to the right.
(c) When the position of block 2 is x2 > d, the center of mass of the system is at rest.
(d) When the position of block 2 is x2 < d, the center of mass of the system is accelerating
to the right.
(e) When the position of block 2 is x2 < d, the center of mass of the system is moving at
a constant speed to the right.
(f) When the position of block 2 is x2 < d, the center of mass is at rest.

†189

24. Pushing a baseball bat

The greatest acceleration of the center of mass of a baseball bat will be produced by
pushing with a force F at

(a) Position 1 (at the handle)
(b) Position 2 (at the center of mass, around the middle of the bat)
(c) Position 3 (at to the very edge)
(d) Any point. The acceleration is the same.
(e) Not enough information is given to decide.”

†190

25. Jumping off the ground

A person of mass m jumps off the ground. Suppose the person pushes off the ground with
a constant force of magnitude F for T seconds.

What was the magnitude of the displacement of the center of mass of the person while
they were in contact with the ground? Express your answer in terms of m, F , T , and g
as needed.

†190

26. Exploding projectile

An instrument-carrying projectile of mass m1 accidentally explodes at the top of its
trajectory. The horizontal distance between launch point and the explosion is xm. The
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projectile breaks into two pieces which fly apart horizontally. The larger piece, m3, has
three times the mass of the smaller piece, m2. To the surprise of the scientist in charge,
the smaller piece returns to earth at the launching station. Neglect air resistance and
effects due to the earth’s curvature.

How far away, xf , from the original launching point does the larger piece land? Express
your answer in terms of some or all of the given variables m1, xm, and g.

†190

27. Center of mass of the Earth-Moon system

The mean distance from the center of the earth to the center of the moon is rem =
3.84× 108 m. The mass of the earth is me = 5.98× 1024 kg and the mass of the moon
is mm = 7.34× 1022 kg. The mean radius of the earth is re = 6.37× 106 m. The mean
radius of the moon is rm = 1.74× 106 m.

How far from the center of the earth is the center of mass of the earth-moon system
located?”

†191

28. Bouncing ball

A superball of mass m, starting at rest, is dropped from a height hi above the ground
and bounces back up to a height of hf . The collision with the ground occurs over a total
time tc. You may ignore air resistance.

a) What is the magnitude of the momentum of the ball immediately before the collision?
Express your answer in terms of m, hi, and g as needed.

b) What is the magnitude of the momentum of the ball immediately after the collision?
Express your answer in terms of m, hf , and g as needed.

c) What is the magnitude of the impulse imparted to the ball? Express your answer in
terms of m, hi, hf , tc, and g as needed.

d) What is the magnitude of the average force of the ground on the ball? Express your
answer in terms of m, hi, hf , tc, and g as needed.

†191

29. Colliding carts

The figure below shows the experimental setup to study the collision between two carts.

97



In the experiment cart A rolls to the right on the level track, away from the motion sensor
at the left end of the track. Cart B is initially at rest. The mass of cart A is equal to the
mass of cart B. Suppose the two carts stick together after the collision. Assume the carts
move frictionlessly.

The kinetic energy of the two carts after the collision:

(a) is equal to one half the kinetic energy of cart A before the collision.
(b) is equal to one quarter the kinetic energy of cart A before the collision.
(c) is equal to the kinetic energy of cart A before the collision.
(d) is equal to twice the kinetic energy of cart A before the collision.
(e) is equal to four times the kinetic energy of cart A before the collision.
(f) None of the above.

†192

30. Man on cart throwing balls

Suppose you are on a cart, initially at rest on a track with very little friction. You throw
balls at a partition that is rigidly mounted on the cart. If the balls bounce straight back
as shown in the figure, is the cart put in motion?

(a) Yes, it moves to the right.

(b) Yes, it moves to the left.

(c) No, it remains in place.

(d) Not enough information is given to decide.

†193

31. Gravitational slingshot
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A spacecraft of mass m1 = 4757 kg with a speed v1i = 3× 103 m/s approaches Saturn
which is moving in the opposite direction with a speed vs = 9.6× 103 m/s. After interacting
gravitationally with Saturn, the spacecraft swings around Saturn and heads off in the
opposite direction it approached. The mass of Saturn is ms = 5.69× 1026 kg. Find the
final speed v1f (in m/s) of the spacecraft after it is far enough away from Saturn to be
nearly free of Saturn’s gravitational pull.

†193

32. Railroad gun

A railroad gun of mass M = 2.0 kg fires a shell of mass m = 1.0 kg at an angle of θ = 45◦

with respect to the horizontal as measured relative to the gun. After the firing is complete,
the final speed of the projectile relative to the gun (muzzle velocity) is v0 = 130.0 m/s.
The gun recoils with speed vr and the instant the projectile leaves the gun, it makes an
angle φ with respect to the ground.

a) What is vp, the speed of the projectile with respect to the ground (in m/s)?

b) What is φ, the angle that the projectile makes with the horizontal with respect to
the ground (in degrees)?

†194
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Chapter 3

Ridged Bodies
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3.1 Systems of particles

Now suppose we have N interacting particles. We adopt the following notation: particle
i has mass mi, position ri, and momentum pi = miṙi. Note that the subscript denotes
which particle it is referring to, not vector components.

Newton’s Second Law for particle i is

mir̈i = ṗi = Fi,

where Fi is the total force acting on particle i. We can write Fi as

Fi = Fext
i +

N∑
j=1

Fij,

where Fij is the force on particle i by particle j, and Fext
i is the external force on i, which

comes from particles outside the system.

Since a particle cannot exert a force on itself, we have Fii = 0. Also, Newton’s third law
requires that

Fij = −Fji.

For example, if the particles interact only via gravity, then we have

Fij = −Gmimj(ri − rj)

|ri − rj|3
= −Fji.

3.1.1 Motion of the center of mass

Sometimes, we are interested in the collection of particles as a whole. For example, if we
treat a cat as a collection of particles, we are more interested in how the cat as a whole
falls, instead of tracking the individual particles of the cat.

Hence, we define some aggregate quantities of the system such as the total mass and
investigate how these quantities relate.

Definition 74 (Total mass). The total mass of the system is M =
∑
mi.

Definition 75 (Center of mass). The center of mass is located at

R =
1

M

N∑
i=1

miri.

This is the mass-weighted average position.

Definition 76 (Total linear momentum). The total linear momentum is

P =
N∑
i=1

pi =
N∑
i=1

miṙi = MṘ.

Note that this is equivalent to the momentum of a single particle of mass M at the center
of mass.
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Definition 77 (Total external force). The total external force is

F =
N∑
i=1

Fext
i .

We can now obtain the equation of motion of the center of mass:

Proposition.
MR̈ = F.

Proof.

MR̈ = Ṗ

=
N∑
i=1

ṗi

=
N∑
i=1

Fext
i +

N∑
i=1

N∑
j=1

Fij

= F +
1

2

∑
i

∑
j

(Fij + Fji)

= F

This means that if we don’t care about the internal structure, we can treat the system as
a point particle of mass M at the center of mass R. This is why Newton’s Laws apply to
macroscopic objects even though they are not individual particles.

Law (Conservation of momentum). If there is no external force, i.e. F = 0, then Ṗ = 0.
So the total momentum is conserved.

If there is no external force, then the center of mass moves uniformly in a straight line.
In this case, we can pick a particularly nice frame of reference, known as the center of
mass frame.

Definition 78 (Center of mass frame). The center of mass frame is an inertial frame
in which R = 0 for all time.

Doing calculations in the center of mass frame is usually much more convenient than
using other frames,

After doing linear motion, we can now look at angular motion.

Definition 79 (Total angular momentum). The total angular momentum of the
system about the origin is

L =
∑
i

ri × pi.
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How does the total angular momentum change with time? Here we have to assume a
stronger version of Newton’s Third law, saying that

Fij = −Fji and is parallel to (ri − rj).

This is true, at least, for gravitational and electrostatic forces.

Then we have

L̇ =
∑
i

ri × ṗi + ṙi × pi

=
∑
i

ri ×

(
Fext
i +

∑
j

Fij

)
+m(ṙi × ṙi)

=
∑
i

ri × Fext
i +

∑
i

∑
j

ri × Fij

=
∑
i

Gext
i +

1

2

∑
i

∑
j

(ri × Fij + rj × Fji)

= G +
1

2

∑
i

∑
j

(ri − rj)× Fij

= G,

where

Definition 80 (Total external torque). The total external torque is

G =
∑
i

ri × Fext
i .

So the total angular momentum is conserved if G = 0, ie the total external torque
vanishes.

3.1.2 Motion relative to the center of mass

So far, we have shown that externally, a multi-particle system behaves as if it were a point
particle at the center of mass. But internally, what happens to the individual particles
themselves?

We write ri = R + rci , where rci is the position of particle i relative to the center of mass.

We first obtain two useful equalities:∑
i

mir
c
i =

∑
miri −

∑
miR = MR−MR = 0.

Differentiating gives ∑
i

miṙ
c
i = 0.
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Using these equalities, we can express the angular momentum and kinetic energy in terms
of R and rci only:

L =
∑
i

mi(R + rci)× (Ṙ + ṙci)

=
∑
i

miR× Ṙ + R×
∑
i

miṙ
c
i +
∑
i

mir
c
i × Ṙ +

∑
i

mir
c
i × ṙci

= MR× Ṙ +
∑
i

mir
c
i × ṙci

T =
1

2

∑
i

mi|ṙi|2

=
1

2

∑
i

mI(Ṙ + ṙi
c) · (Ṙ + ṙci)

=
1

2

∑
i

miṘ · Ṙ + Ṙ ·
∑
i

miṙ
c
i +

1

2

∑
i

miṙ
c
i · ṙci

=
1

2
M |Ṙ|2 +

1

2

∑
i

mi|ṙci |2

We see that each item is composed of two parts — that of the center of mass and that of
motion relative to center of mass.

If the forces are conservative in the sense that

Fext
i = −∇iVi(ri),

and
Fij = −∇iVij(ri − rj),

where ∇i is the gradient with respect to ri, then energy is conserved in the from

E = T +
∑
i

Vi(ri) +
1

2

∑
i

∑
j

Vij(ri − rj) = const.

3.1.3 The two-body problem

The two-body problem is to determine the motion of two bodies interacting only via
gravitational forces.

The center of mass is at

R =
1

M
(m1r1 +m2r2),

where M = m1 +m2.

The magic trick to solving the two-body problem is to define the separation vector (or
relative position vector)

r = r1 − r2.

Then we write everything in terms of R and r.

r1 = R +
m2

M
r, r2 = R− m1

M
r.
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r2

r1

R
r

Since the external force F = 0, we have R̈ = 0, i.e. the center of mass moves uniformly.

Meanwhile,

r̈ = r̈1 − r̈2

=
1

m1

F12 −
1

m2

F21

=

(
1

m1

+
1

m2

)
F12

We can write this as
µr̈ = F12(r),

where
µ =

m1m2

m1 +m2

is the reduced mass. This is the same as the equation of motion for one particle of
mass µ with position vector r relative to a fixed origin — as studied previously.

For example, with gravity,

µr̈ = −Gm1m2r̂

|r|2
.

So

r̈ = −GM r̂

|r|2
.

For example, give a planet orbiting the Sun, both the planet and the sun moves in ellipses
about their center of mass. The orbital period depends on the total mass.

It can be shown that

L = MR× Ṙ + µr× ṙ

T =
1

2
M |Ṙ|2 +

1

2
µ|ṙ|2

by expressing r1 and r2 in terms of r and R.

3.1.4 Variable-mass problem

All systems we’ve studied so far have fixed mass. However, in real life, many objects have
changing mass, such as rockets, fireworks, falling raindrops and rolling snowballs.

Again, we will use Newton’s second law, which states that

dp

dt
= F, with p = mṙ.
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We will consider a rocket moving in one dimension with mass m(t) and velocity v(t). The
rocket propels itself forwards by burning fuel and ejecting the exhaust at velocity −u
relative to the rocket.

At time t, the rocket looks like this:

m(t)

v(t)

At time t+ δt, it ejects exhaust of mass m(t)−m(t+ δt) with velocity v(t)− u+O(δt).

m(t)

v(t)

mv(t)− u

The change in total momentum of the system (rocket + exhaust) is

δp = m(t+ δt)v(t+ δt) + [m(t)−m(t+ δt)][v(t)− u(t) +O(δt)]−m(t)v(t)

= (m+ ṁδt+O(δt2))(v + v̇δt+O(δt2))− ṁδt(v − u) +O(δt2)−mv
= (ṁv +mv̇ − ṁv + ṁu)δt+O(δt2)

= (mv̇ + ṁu)δt+O(δt2).

Newton’s second law gives

lim
δ→0

δp

δt
= F

where F is the external force on the rocket. So we obtain

Proposition (Rocket equation).

m
dv

dt
+ u

dm

dt
= F.

Example. Suppose that we travel in space with F = 0. Assume also that u is constant.
Then we have

m
dv

dt
= −udm

dt
.

So

v = v0 + u log

(
m0

m(t)

)
,

Note that we are expressing things in terms of the mass remaining m, not time t.

Note also that the velocity does not depend on the rate at which mass is ejected, only the
velocity at which it is ejected. Of course, if we expressed v as a function of time, then the
velocity at a specific time does depend on the rate at which mass is ejected.
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Example. Consider a falling raindrop of mass m(t), gathering mass from a stationary
cloud. In this case, u = v. So

m
dv

dt
+ v

dm

dt
=

d

dt
(mv) = mg,

with v measured downwards. To obtain a solution of this, we will need a model to
determine the rate at which the raindrop gathers mass.
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3.2 Rigid bodies

This chapter is somewhat similar to the previous chapter. We again have a lot of particles
and we study their motion. However, instead of having forces between the individual
particles, this time the particles are constrained such that their relative positions are fixed.
This corresponds to a solid object that cannot deform. We call these rigid bodies.

Definition 81 (Rigid body). A rigid body is an extended object, consisting of N
particles that are constrained such that the distance between any pair of particles, |ri−rj|,
is fixed.

The possible motions of a rigid body are the continuous isometries of Euclidean space, i.e.
translations and rotations. However, as we have previously shown, pure translations of
rigid bodies are uninteresting — they simply correspond to the center of mass moving
under an external force. Hence we will first study rotations.

Later, we will combine rotational and translational effects and see what happens.

3.2.1 Angular velocity

We’ll first consider the cases where there is just one particle, moving in a circle of radius
s about the z axis. Its position and velocity vectors are

r = (s cos θ, s sin θ, z)

ṙ = (−sθ̇ sin θ, sθ̇ cos θ, 0).

We can write
ṙ = ω × r,

where
ω = θ̇ẑ

is the angular velocity vector.

In general, we write
ω = θ̇n̂ = ωn̂,

where n̂ is a unit vector parallel to the rotation axis.

The kinetic energy of this particle is thus

T =
1

2
m|ṙ|2

=
1

2
ms2θ̇2

=
1

2
Iω2

where I = ms2 is the moment of inertia. This is the counterpart of “mass” in rotational
motion.

Definition 82 (Moment of inertia). The moment of inertia of a particle is

I = ms2 = m|n̂× r|2,

where s is the distance of the particle from the axis of rotation.
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3.2.2 Moment of inertia

In general, consider a rigid body in which all N particles rotate about the same axis with
the same angular velocity:

ṙi = ω × ri.

This ensures that

d

dt
|ri − rj|2 = 2(ṙi − ṙj) · (ri − rj) = 2

(
ω × (ri − rj)

)
· (ri − rj) = 0,

as required for a rigid body.

Similar to what we had above, the rotational kinetic energy is

T =
1

2

N∑
i=1

mi|ṙi|2 =
1

2
Iω2,

where

Definition 83 (Moment of inertia). The moment of inertia of a rigid body about the
rotation axis n̂ is

I =
N∑
i=1

mis
2
i =

N∑
i=1

mi|n̂× ri|2.

Again, we define the angular momentum of the system:

Definition 84. The angular momentum is

L =
∑
i

miri × ṙi =
∑
i

miri × (ω × ri).

Note that our definitions for angular motion are analogous to those for linear motion. The
moment of inertia I is defined such that T = 1

2
Iω2. Ideally, we would want the momentum

to be L = Iω. However, this not true. In fact, L need not be parallel to ω.

What is true, is that the component of L parallel to ω is equal to Iω. Write ω = ωn̂.
Then we have

L · n̂ = ω
∑
i

min̂ · (ri × (n̂× ri))

= ω
∑
i

m(n̂× ri) · (n̂× ri)

= Iω.

What does L itself look like? Using vector identities, we have

L =
∑
i

mi

(
(ri · ri)ω − (ri · ω)ri

)
Note that this is a linear function of ω. So we can write

L = Iω,
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where we abuse notation to use I for the inertia tensor. This is represented by a
symmetric matrix with components

Ijk =
∑
i

mi(|ri|2δjk − (ri)j(ri)k),

where i refers to the index of the particle, and j, k are dummy suffixes.

If the body rotates about a principal axis, i.e. one of the three orthogonal eigenvectors
of I, then L will be parallel to ω. Usually, the principal axes lie on the axes of rotational
symmetry of the body.

3.2.3 Calculating the moment of inertia

For a solid body, we usually want to think of it as a continuous substance with a mass
density, instead of individual point particles. So we replace the sum of particles by a
volume integral weighted by the mass density ρ(r).

Definition 85 (Mass, center of mass and moment of inertia). The mass is

M =

∫
ρ dV.

The center of mass is

R =
1

M

∫
ρr dV

The moment of inertia is

I =

∫
ρs2 dV =

∫
ρ|n̂× r|2 dV.

In theory, we can study inhomogeneous bodies with varying ρ, but usually we mainly
consider homogeneous ones with constant ρ throughout.

Example (Thin circular ring). Suppose the ring has mass M and radius a, and a rotation
axis through the center, perpendicular to the plane of the ring.

a

Then the moment of inertia is
I = Ma2.

Example (Thin rod). Suppose a rod has mass M and length `. It rotates through one
end, perpendicular to the rod.
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`

The mass per unit length is M/`. So the moment of inertia is

I =

∫ `

0

M

`
x2 dx =

1

3
M`2.

Example (Thin disc). Consider a disc of mass M and radius a, with a rotation axis
through the center, perpendicular to the plane of the disc.

a

Then

I =

∫ 2π

0

∫ a

0

M

πa2︸︷︷︸
mass per unit length

r2︸︷︷︸
s2

r dr dθ︸ ︷︷ ︸
area element

=
M

πa2

∫ a

0

r3 dr

∫ 2π

0

dθ

=
M

πa2

1

4
a4(2π)

=
1

2
Ma2.

Now suppose that the rotation axis is in the plane of the disc instead (also rotating
through the center). Then

I =

∫ 2π

0

∫ a

0

M

πa2︸︷︷︸
mass per unit length

(r sin θ)2︸ ︷︷ ︸
s2

r dr dθ︸ ︷︷ ︸
area element

=
M

πa2

∫ a

0

r3 dr

∫ 2π

0

sin2 θ dθ

=
M

πa2

1

4
a4π

=
1

4
Ma2.

Example. Consider a solid sphere with mass M , radius a, with a rotation axis though
the center.
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a

Using spherical polar coordinates (r, θ, φ) based on the rotation axis,

I =

∫ 2π

0

∫ π

0

∫ a

0

M
4
3
πa3︸ ︷︷ ︸
ρ

(r sin θ)2︸ ︷︷ ︸
s2

r2 sin θ dr dθ dφ︸ ︷︷ ︸
volume element

=
M

4
3
πa3

∫ a

0

r4 dr

∫ π

0

(1− cos2) sin θ dθ

∫ 2π

0

dφ

=
M

4
3
πa3
· 1

5
a5 · 4

3
· 2π

=
2

5
Ma2.

Usually, finding the moment of inertia involves doing complicated integrals. We will now
come up with two theorems that help us find moments of inertia.

Theorem 14 (Perpendicular axis theorem). For a two-dimensional object (a lamina),
and three perpendicular axes x, y, z through the same spot, with z normal to the plane,

Iz = Ix + Iy,

where Iz is the moment of inertia about the z axis.

x

y

z

Note that this does not apply to 3D objects! For example, in a sphere, Ix = Iy = Iz.

Proof. Let ρ be the mass per unit volume. Then

Ix =

∫
ρy2 dA

Iy =

∫
ρx2 dA

Iz =

∫
ρ(x2 + y2) dA = Ix + Iy.
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Example. For a disc, Ix = Iy by symmetry. So Iz = 2Ix.

Theorem 15 (Parallel axis theorem). If a rigid body of mass M has moment of inertia
IC about an axis passing through the center of mass, then its moment of inertia about a
parallel axis a distance d away is

I = IC +Md2.

CM
d

Proof. With a convenient choice of Cartesian coordinates such that the center of mass is
at the origin and the two rotation axes are x = y = 0 and x = d, y = 0,

IC =

∫
ρ(x2 + y2) dV,

and ∫
ρr dV = 0.

So

I =

∫
ρ((x− d)2 + y2) dV

=

∫
ρ(x2 + y2) dV − 2d

∫
ρx dV +

∫
d2ρ dV

= Ic + 0 +Md2

= Ic +Md2.

Example. Take a disc of mass M and radius a, and rotation axis through a point on the
circumference, perpendicular to the plane of the disc. Then

a

I = Ic +Ma2 =
1

2
Ma2 +Ma2 =

3

2
Ma2.
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3.2.4 Motion of a rigid body

The general motion of a rigid body can be described as a translation of its centre of mass,
following a trajectory R(t), together with a rotation about an axis through the center of
mass. As before, we write

ri = R + rci .

Then
ṙi = Ṙ + ṙci .

Using this, we can break down the velocity and kinetic energy into translational and
rotational parts.

If the body rotates with angular velocity ω about the center of mass, then

ṙci = ω × rci .

Since rci = ri −R, we have

ṙi = Ṙ + ω × rci = Ṙ + ω × (ri −R).

On the other hand, the kinetic energy, as calculated in previous lectures, is

T =
1

2
M |Ṙ|2 +

1

2

∑
i

mi|ṙci |2

=
1

2
M |Ṙ|2︸ ︷︷ ︸

translational KE

+
1

2
Icω2︸ ︷︷ ︸

rotational KE

.

Sometimes we do not want to use the center of mass as the center. For example, if an
item is held at the edge and spun around, we’d like to study the motion about the point
at which the item is held, and not the center of mass.

So consider any point Q, with position vector Q(t) that is not the center of mass but
moves with the rigid body, i.e.

Q̇ = Ṙ + ω × (Q−R).

Usually this is a point inside the object itself, but we do not assume that in our calculation.

Then we can write

ṙi = Ṙ + ω × (ri −R)

= Q̇− ω × (Q−R) + ω × (ri −R)

= Q̇ + ω × (ri −Q).

Therefore the motion can be considered as a translation of Q (with different velocity
than the center of mass), together with rotation about Q (with the same angular velocity
ω).
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Equations of motion

As shown previously, the linear and angular momenta evolve according to

Ṗ = F (total external force)

L̇ = G (total external torque)

These two equations determine the translational and rotational motion of a rigid body.

L and G depend on the choice of origin, which could be any point that is fixed in an
inertial frame. More surprisingly, it can also be applied to the center of mass, even if this
is accelerated: If

mir̈i = Fi,

then
mir̈

c
i = Fi +miR̈.

So there is a fictitious force miR̈ in the center-of-mass frame. But the total torque of the
fictitious forces about the center of mass is∑

i

rci ×
(
−miR̈

)
= −

(∑
mir

c
i

)
× R̈ = 0× Ṙ = 0.

So we can still apply the above two equations.

In summary, the laws of motion apply in any inertial frame, or the center of mass (possibly
non-inertial) frame.

Motion in a uniform gravitational field

In a uniform gravitational field g, the total gravitational force and torque are the same as
those that would act on a single particle of mass M located at the center of mass (which
is also the center of gravity):

F =
∑
i

Fext
i =

∑
i

mig = Mg,

and
G =

∑
i

Gext
i =

∑
i

ri × (mig) =
∑

miri × g = MR× g.

In particular, the gravitational torque about the center of mass vanishes: Gc = 0.

We obtain a similar result for gravitational potential energy.

The gravitational potential in a uniform g is

Φg = −r · g.

(since g = −∇Φg by definition)

So

V ext =
∑
i

V ext
i

=
∑
i

mi(−ri · g)

= M(−R · g).
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Example (Thrown stick). Suppose we throw a symmetrical stick. So the center of mass
is the actual center. Then the center of the stick moves in a parabola. Meanwhile, the
stick rotates with constant angular velocity about its center due to the absence of torque.

Example. Swinging bar.

`

Mg

This is an example of a compound pendulum.

Consider the bar to be rotating about the pivot (and not translating). Its angular
momentum is L = Iθ̇ with I = 1

3
M`2. The gravitational torque about the pivot is

G = −Mg
`

2
sin θ.

The equation of motion is
L̇ = G.

So

Iθ̈ = −Mg
`

2
sin θ,

or

θ̈ = −3g

2`
sin θ.

which is exactly equivalent to a simple pendulum of length 2`/3, with angular frequency√
3g
2`

.

This can also be obtained from an energy argument:

E = T + V =
1

2
Iθ̇2 −Mg

`

2
cos θ.

We differentiate to obtain

dE

dt
= θ̇(Iθ̈ +Mg

`

2
sin θ) = 0.

So

Iθ̈ = −Mg
`

2
sin θ.

Sliding versus rolling

Consider a cylinder or sphere of radius a, moving along a stationary horizontal surface.
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a

vω

In general, the motion consists of a translation of the center of mass (with velocity v) plus
a rotation about the center of mass (with angular velocity ω).

The horizontal velocity at the point of contact is

vslip = v − aω.

For a pure sliding motion, v 6= 0 and ω = 0, in which case v−aω 6= 0: the point of contact
moves relative to the surface and kinetic friction may occur.

For a pure rolling motion, v 6= 0 and ω 6= 0 such that v − aω = 0: the point of contact is
stationary. This is the no-slip condition.

The rolling body can alternatively be considered to be rotating instantaneously about the
point of contact (with angular velocity ω) and not translating.

Example (Rolling down hill).

a

v

ω

α

Consider a cylinder or sphere of mass M and radius a rolling down a rough plane inclined
at angle α. The no-slip (rolling) condition is

v − aω = 0.

The kinetic energy is

T =
1

2
Mv2 +

1

2
Iω2 =

1

2

(
M +

I

a2

)
v2.

The total energy is

E =
1

2

(
M +

I

a2

)
ẋ2 −Mgx sinα,

where x is the distance down slope. While there is a frictional force, the instantaneous
velocity is 0, and no work is done. So energy is conserved, and we have

dE

dt
= ẋ

((
M +

I

a2

)
ẍ−Mg sinα

)
= 0.
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So (
M +

I

a2

)
ẍ = Mg sinα.

For example, if we have a uniform solid cylinder,

I =
1

2
Ma2 (as for a disc)

and so

ẍ =
2

3
g sinα.

For a thin cylindrical shell,
I = Ma2.

So

ẍ =
1

2
g sinα.

Alternatively, we may do it in terms of forces and torques,

v

α

N

F

Mg

The equations of motion are
Mv̇ = Mg sinα− F

and
Iω̇ = aF.

While rolling,
v̇ − aω̇ = 0.

So

Mv̇ = Mg sinα− I

a2
v̇,

leading to the same result.

Note that even though there is a frictional force, it does no work, since vslip = 0. So energy
is still conserved.

Example (Snooker ball).
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a

N
Mg

F

ω

It is struck centrally so as to initiate translation, but not rotation. Sliding occurs initially.
Intuitively, we think it will start to roll, and we’ll see that’s the case.

The constant frictional force is

F = µkN = µkMg,

which applies while v − aω > 0.

The moment of inertia about the center of mass is

I =
2

5
Ma2.

The equations of motion are

Mv̇ = −F
Iω̇ = aF

Initially, v = v0 and ω = 0. Then the solution is

v = v0 − µkgt

ω =
5

2

µkg

a
t

as long as v − aω > 0. The slip velocity is

vslip = v − aω = v0 −
7

2
µkgt = v0

(
1− t

troll

)
,

where

troll =
2v0

7µkg
.

This is valid up till t = troll. Then the slip velocity is 0, rolling begins and friction ceases.

At this point, v = aω = 5
7
v0. The energy is then 5

14
Mv2

0 <
1
2
Mv2

0. So energy is lost to
friction.
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3.3 PROBLEMS

33. turntables

A turntable is a uniform disc of mass m and radius R. The turntable is initially spinning
clockwise when looked down on from above at a constant frequency f0. The motor is
turned off at t = 0 and the turntable slows to a stop in time t with constant angular
deceleration.

a) What is the magnitude of the initial angular velocity ω0 of the turntable?

b) What is the magnitude of the angular acceleration α of the turntable?

c) What is the magnitude of the total angle ∆θ in radians that the turntable spins
while slowing down?

Express your answer in terms of f0 and t.”

†197

34. Angular dynamics

A playground merry-go-round has a radius of R = 2 m and has a moment of inertia
Icm = 5× 103 kgm2 about a vertical axis passing through the center of mass. There is
negligible friction about this axis. Two children each of mass m = 25 kg are standing on
opposite sides at a distance ro = 1.4 m from the central axis. The merry-go-round is initially
at rest. A person on the ground applies a constant tangential force of F = 2× 102 N at
the rim of the merry-go-round for a time ∆t = 10 s . For your calculations, assume the
children to be point masses.

a) What is the angular acceleration α of the merry-go-round (in rad/s2)?

b) What is the angular velocity ωfinal of the merry-go-round when the person stopped
applying the force (in rad/s)?
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c) What average power Pavg does the person put out while pushing the merry-go-round
(in Watts)?

d) What is the rotational kinetic energy R.K.Efinal of the merry-go-round when the
person stopped applying the force (in kg m2/s2)?

†197

35. Atwood machine

A pulley of mass mp, radius R, and moment of inertia about the center of mass Ic =
1

2
mpR

2,

is suspended from a ceiling. The pulley rotates about a frictionless axle. An inextensible
string of negligible mass is wrapped around the pulley and it does not slip on the pulley.
The string is attached on one end to an object of mass m1 and on the other end to an
object of mass with m2 < m1.

At time t = 0, the objects are released from rest.

a) Find the magnitude of the acceleration of the two objects.

b) How long does it take the objects to move a distance d?

Express your answer in terms of d, m1, m2, mp, R and acceleration due to gravity g.

†199

36. Pulley-object rotational dynamics

A light inflexible cable is wrapped around a cylinder of mass m1, radius R, and moment
of inertia about the center of mass Ic. The cylinder rotates about its axis without friction.
The cable does not slip on the cylinder when set in motion. The free end of the cable is
attached to an object of mass m2. The object is released from rest at a height h above
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the floor. You may assume that the cable has negligible mass. Let g be the acceleration
due to gravity.

a) Find the acceleration a of the falling object.

b) Find the tension T in the cable.

c) Find the speed v of the falling object just before it hits the floor.

Express your answer in terms of m2, R, Icm, h and g as needed.

†200

37. Yo-yo

A yo-yo of mass m rests on the floor (the static friction coefficient with the floor is µ).
The inner (shaded) portion of the yo-yo has a radius R1, the two outer disks have radii
R2. A string is wrapped around the inner part. Someone pulls on the string at an angle β
(see sketch). The “pull” is very gentle, and is carefully increased until the yo-yo starts to
roll without slipping. Try it at Home; it’s Fun!

For what angles of β will the yo-yo roll to the left and for what angles to the right?
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(i) Yo-Yo rolls to the left if sin β <
R1

R2

, and to the right if sin β >
R1

R2

.

(ii) Yo-Yo rolls to the left if sin β >
R1

R2

, and to the right if sin β <
R1

R2

.

(iii) Yo-Yo rolls to the left if cos β <
R1

R2

, and to the right if cos β >
R1

R2

.

(iv) Yo-Yo rolls to the left if cos β >
R1

R2

, and to the right if cos β <
R1

R2

.

†202

38. Stick on table

A uniform stick of mass m and length ` is suspended horizontally with end B at the edge
of a table as shown in the diagram, and the other end A is originally held by hand. The
hand at A is suddenly released.

At the instant immediately after the release:

a) What is the magnitude of the torque (τB) about the end B at the edge of the table?

b) What is the magnitude of the angular acceleration α about the end B at the edge of
the table?

c) What is the magnitude of the vertical acceleration a of the center of mass?

d) What is the magnitude of the vertical component of the hinge force (N) at B?

Express your answer in terms of m, ` and acceleration due to gravity g as needed.

†203

39. Physical pendulum

A physical pendulum consists of a disc of radius R and mass m fixed at the end of a rod
of mass m and length `.
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a) Find the period of the pendulum for small angles of oscillation.

b) For small angles of oscillation, what is the new period of oscillation if the disk is
mounted to the rod by a frictionless bearing so that it is perfectly free to spin?

Express your answer in terms of m, R, ` and acceleration due to gravity g as needed.

†205

40. Two rotating disks

A solid disk 1 with radius R1 is spinning freely about a frictionless horizontal axle ` at
an angular speed ω initially. The axle ` is perpendicular to disk 1, and goes through the
center S of disk 1.

The circumference of disk 1 is pushed against the circumference of another disk (disk
2). Disk 2 has the same thickness and density as disk 1, but has a radius R2, and it is
initially at rest. Disk 2 can rotate freely about a horizontal axle m through its center P.
Axles m and ` are parallel. The friction coefficient between the two touching surfaces
(disk circumferences) is µ.

We wait until an equilibrium situation is reached (i.e. the circumferences of the two disks
are no longer slipping against each other). At that time, disk 1 is spinning with angular
velocity ω1, and disk 2 is spinning with angular velocity ω2.
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Calculate the magnitude of the angular velocities |ω1| and |ω2| in terms of R1, R2 and ω.

†207

41. Translation and rotation

A rod is lying at rest on a perfectly smooth horizontal surface (no friction). We give rod
a short impulse (a hit) perpendicular to the length direction of the rod at X. The mass of
the rod is 3 kg, and its length is 50 cm. The impulse is 4 kgm/s. The distance from the
center C of the rod to X is 15 cm.

a) What is the translational speed |vcm| of C after the rod is hit (in m/s)?

b) What is the magnitude of the angular velocity ω of the rod about C (in rad/s)?

c) How far (distance D in meters) has the center C of the rod moved from its initial
position 8 seconds after it was hit? And what is the angle θ (in radians) between
the direction of the rod at 8 seconds after it was hit, and its initial direction (before
it was hit)? Give the smaller angle.

d) What is the total kinetic energy K of the rod after it was hit? (in joules)

†211

42. Going to the Sun

A spacecraft of mass m is first brought into an orbit around the earth. The earth (together
with the spacecraft) orbits the sun in a near circular orbit with radius R (R is the mean
distance between the earth and the sun; it is about 150 million km).

a) What is the speed v0 (in m/s) of the earth in its orbit of radius R = 1.5× 1011 m
around the sun with a mass M = 1.99× 1030 kg? Take the gravitational constant
G = 6.674× 10−11 m3kg−1s−2.

b) What is the total impulse I0 that would have to be given by the rocket to the
spacecraft to accomplish this? You may ignore the effect of the earth’s gravitation
as well as the orbital speed of the spacecraft around the earth as the latter is much
smaller than the speed of the earth around the sun. Thus, you may assume that the
spacecraft, before the rocket is fired, has the same speed in its orbit around the sun
as the earth. Express your answer in terms of m and v0.

c) Calculate the impulse I1 required at the first rocket burn (the boost). Express your
answer in terms of I0, R and r.”

d) What is the speed v2 of the spacecraft at aphelion? Express your answer in terms of
v0, R and r.

e) Calculate the impulse I2 required at the second rocket burn (at aphelion). Express
your answer in terms of I0, R and r.

f) Compare the impulse under b) with the sum of the impulses under c) and e) (i.e find
I0 − (I1 + I2)), and convince yourself that the latter procedure is more economical.
Express your answer in terms of I0, R and r.
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†212

43. Black hole in X-ray binary

An X-ray binary consists of 2 stars with masses m1 (the accreting compact object) and
m2 (the donor). The orbits are circular with radii r1 and r2 centered on the center of
mass.

a) Find the orbital period T of the binary following the guidelines given in lectures.
Express your answer in terms of (m1 +m2), (r1 + r2) and G.

b) In the case of Cyg X-1 (as discussed in lectures), the orbital period is 5.6 days. The
donor star is a “supergiant” with a mass 30 times that of the sun. Doppler shift
measurements indicate that the donor star has an orbital speed v2 of about 148
km/sec. Calculate r2 (in meters).

c) Calculate r1 (in meters).

d) Now calculate the mass m1 of the accreting compact object (express that as ratio
to the mass of the sun m1/MSun).”

†215

44. Torque, rotation and translation

A Yo-Yo of mass m has an axle of radius b and a spool of radius R. Its moment of inertia

about the center can be taken to be I =
1

2
mR2 and the thickness of the string can be

neglected. The Yo-Yo is released from rest. You will need to assume that the center of
mass of the Yo-Yo descends vertically, and that the string is vertical as it unwinds.
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a) What is magnitude of the tension in the cord as the Yo-Yo descends?

b) Find the angular speed of the Yo-Yo when it reaches the bottom of the string, when
a length ` of the string has unwound.

c) Find the magnitude of the average tension in the string over the course of the Yo-Yo
reversing its direction at the bottom of its descent (see figure below).

Express your answer in terms of m, b, R, ` and acceleration due to gravity g.

†217

45. Double block pulley

A pulley of mass mp, radius R, and moment of inertia about its center of mass Ic, is
attached to the edge of a table. An inextensible string of negligible mass is wrapped
around the pulley and attached on one end to block 1 that hangs over the edge of the
table. The other end of the string is attached to block 2 which slides along a table. The
coefficient of sliding friction between the table and the block 2 is µk . Block 1 has mass m1

and block 2 has mass m2, with m1 > µkm2. At time t = 0, the blocks are released from
rest. At time t = t1, block 1 hits the ground. Let g denote the gravitational acceleration
near the surface of the earth.

a) Find the magnitude of the linear acceleration of the blocks.

b) How far did the block 1 fall before hitting the ground?
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Express your answer in terms of m1, m2, Ic, R, µk, t1 and g as needed.

†220

46. Wheel, inclined plane, two masses and a rope

A wheel in the shape of a uniform disk of radius R and mass mp is mounted on a frictionless

horizontal axis. The wheel has moment of inertia about the center of mass Icm =
1

2
mpR

2.

A massless cord is wrapped around the wheel and one end of the cord is attached to an
object of mass m2 that can slide up or down a frictionless inclined plane. The other end of
the cord is attached to a second object of mass m1 that hangs over the edge of the inclined
plane. The plane is inclined from the horizontal by an angle θ. Once the objects are
released from rest, the cord moves without slipping around the disk. Find the magnitude
of accelerations of each object, and the magnitude of tensions in the string on either side
of the pulley. Assume that the cord doesn’t stretch (a1 = a2 = a). Express your answers
in terms of the masses m1, m2, mp, angle θ and the gravitational acceleration due to
gravity near earth’s surface g.’

†221

47. Rolling object on an incline

A hollow cylinder of outer radius R and mass M with moment of inertia about the center
of mass Icm = MR2 starts from rest and moves down an incline tilted at an angle θ from
the horizontal. The center of mass of the cylinder has dropped a vertical distance h when
it reaches the bottom of the incline. Let g denote the acceleration due to gravity. The
coefficient of static friction between the cylinder and the surface is µs. The cylinder rolls
without slipping down the incline. The goal of this problem is to find an expression for
the smallest possible value of µs such that the cylinder rolls without slipping down the
incline plane and the velocity of the center of mass of the cylinder when it reaches the
bottom of the incline.
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a) What is the magnitude of the acceleration a of the center of mass of the cylinder on
the incline?

b) What is the minimum value for the coefficient of static friction µs such that the
cylinder rolls without slipping down the incline plane?

c) What is the magnitude of the velocity of the center of mass of the cylinder when it
reaches the bottom of the incline?

Express your answer in terms of θ, h and g as needed.

†222

48. Space debris collision

A satellite of mass m is orbiting the earth, mass M , in a circular orbit of radius ra.
Unfortunately a piece of space debris left by a passing rocket lies directly in the satellite’s
path. The piece of debris has the same mass m as the satellite. The debris collides with
the satellite and sticks to the satellite. Assume that the debris has negligible speed just
before the collision. After the collision, the satellite and debris enter an elliptical orbit
around the earth. The distance of closest approach to the earth of the satellite and the
debris is rp. Let G be the universal constant of gravity. You may assume that M � m.

a) Find an expression for the speed v0 of the satellite before the collision.

b) Calculate the ratio ra/rp.

You may express your answer in terms of M , ra and G as needed.

†224

49. Turntable solutions
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A gyroscope consists of a uniform disc of mass radius M = 2 kg and radius R = 0.3 m.
The disc spins with an angular speed ω = 400 rad/s as shown in the figure [above]. The
gyroscope precesses, with its axle at an angle 30◦ below the horizontal (see figure). The
gyroscope is pivoted about a point d = 0.6 m from the center of the disc. What is the
magnitude of the precessional angular velocity Ω (in radians/sec)?

†226

50. Grain mill

In a grain mill, grain is ground by a massive wheel which rolls without slipping in a circle
on a flat horizontal surface driven by a vertical shaft. The rolling wheel has radius b and
is constrained to roll in a horizontal circle of radius R at angular speed Ω. Because of the
stone’s angular momentum, the contact force with the surface can be considerably greater
than the weight of the wheel. In this problem, the angular speed Ω about the shaft is
such that the contact force between the ground and the wheel is equal to twice the weight.
The goal of the problem is to find Ω. Assume that the wheel is closely fitted to the axle
so that it cannot tip, and that the width of the wheel cLR. Neglect friction and the mass
of the axle of the wheel. Let g denote the acceleration due to gravity.

a) How is the angular speed ω of the wheel about its axis related to the angular speed
Ω about the shaft?

b) What is the horizontal component of the angular momentum vector about the
point P in the figure above? Although we have not shown this, for this situation
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it is correct to compute the horizontal component of the angular momentum by
completely ignoring the rotation of the mill wheel about the vertical axis, taking
into account only the rotation of the mill wheel about its own axle.

c) What is the magnitude of the torque about the joint (about the point P in the figure
above) due to the forces acting on the axle-wheel combination?

d) What is the value of Ω if the contact force between the stone and the ground
N = 2Mg?

Express your answers in terms of Ω, M , N , b, R and g as necessary.

†227

51. Double drums rotating

A drum A of mass M and radius R is suspended from a drum B also of mass M and radius
R, which is free to rotate about its axis. The suspension is in the form of a massless metal
tape wound around the outside of each drum, and free to unwind. Gravity is directed
downwards. Both drums are initially at rest. Consider the drums to be uniform disks.

Find the initial acceleration of drum A, assuming that it moves straight down. Express
your answer in terms of M , R and acceleration due to gravity g as needed.

†229

52. Crane

A crane is configured as below, with the beam suspended at two points `1 and `2 by each
end of a cable passing over a frictionless pulley. The two ends of the cable each make
an angle θ with the beam. A counterbalance object C with mass mC is fixed at one end
of the beam. A balance object B of mass mB is attached to the beam and can move
horizontally in order to maintain static equilibrium. The crane lifts an object A with mass
mA at a distance y from the counterbalance. For simplicity, assume the pulley, beam and
cable to be massless.
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a) What is the tension in the cable that runs over the pulley?

b) At what horizontal position, x, should one put the balance object B such that the
crane doesn’t tilt?

Express your answer in terms of g, mA, mB, mC , `1, `2 θ and y as needed.

†230

53. Steel beam and cable

A uniform steel beam of mass m1 = 150.0 kg is held up by a steel cable that is connected
to the beam a distance L = 5.0 m from the wall, at an angle θ = 35.0◦ as shown in the
sketch. The beam is bolted to the wall with an unknown force F exerted by the wall
on the beam. An object of mass m2 = 60.0 kg resting on top of the beam, is placed a
distance d = 2.0 m from the wall. For simplicity, assume the steel cable to be massless.
Use g = 9.8 m/s2 for the gravitational acceleration.
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a) Find the tension (in Newton) in the cable. Start by drawing a free-body diagram for
the beam, then find equations for static equilibrium for the beam (this will involve
force equations and torque relations).

b) Find the horizontal and vertical components of the force (in Newton) that the wall
exerts on the beam.”

†231

54. Person on ladder

A person of mass m2 = 85.0 kg is standing on a rung, one third of the way up a ladder of
length d = 4.0 m. The mass of the ladder is m1 = 15.0 kg, uniformly distributed. The
ladder is initially inclined at an angle θ = 40.0◦ with respect to the horizontal. Assume
that there is no friction between the ladder and the wall but that there is friction between
the base of the ladder and the floor with a coefficient of static friction µs.

Start this problem by drawing a free-body force diagrams showing all the forces acting on
the person and the ladder. Indicating a choice of unit vectors on your free-body diagrams
may be helpful.

a) Using the equations of static equilibrium for both forces and torque, find expressions
for the normal and horizontal components of the contact force between the ladder
and the floor, and the normal force between the ladder and the wall. Consider
carefully which point to use for computing the torques. Determine the magnitude
of the frictional force (in N) between the base of the ladder and the floor below.

b) Find the magnitude for the minimum coefficient of friction between the ladder and
the floor so that the person and ladder does not slip.
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c) Find the magnitude Cladder,ground (in N) of the contact force that the floor exerts
on the ladder. Remember, the contact force is the vector sum of the normal force
and friction. Find the direction of the contact force that the floor exerts on the
ladder. i.e. determine the angle α (in radians) that the contact force makes with
the horizontal to indicate the direction.

†232

55. Static equilibrium arm

You are holding a ball of mass m2 in your hand. In this problem you will solve for the
upward force T that the tendon of your biceps muscle exerts to keep the forearm horizontal
and the downward force F that the upper arm exerts on the forearm at the elbow joint.
Assume the outstretched arm has a mass of m1, the center of mass of the outstretched
arm is a distance s from the elbow, the tendon attaches to the bone a distance d from the
elbow, and the ball is a distance 2s from the elbow. (Taking T to be upward and F to be
downward, with no horizontal components, indicates that this is a simplified model.)
A schematic representation of this situation is shown below:

Hint: The forces can be modeled as shown in the following Free Body Diagram:

a) What is the magnitude of the tension T ≡ |T| in the tendon?

b) What is the magnitude of the force that the upper arm exerts on the forearm at the
elbow joint?

134



Express your answer in terms of s, m1, m2, d and g as needed.

†233

56. Specific strength

A metal meter stick made of steel rotates about its midpoint. The angular speed is slowly
increased. At what value of the angular speed will the stick break apart at the center?
Give your answer in rad/s.

Hint: find a relationship between the maximum angular frequency and the breaking
(ultimate tensile strength) of steel. Use the values that are given in this table in the
handout of lecture 26 [link not copied].’

†234

57. Static friction of stick leaning against a wall

A stick of length ` = 60.0 cm rests against a wall. The coefficient of static friction between
stick and the wall and between the stick and the floor are equal. The stick will slip off the
wall if placed at an angle greater than θ = 40.0 degrees. What is the coefficient of static
friction, µs, between the stick and the wall and floor?

†235

58. Three balls in a tube

Three smooth balls of iron of mass m and radius R are placed inside a tube of diameter
3R (see Figure). Find the magnitude of the forces (A, B, C and D) exerted by the sides
of the container on each ball. Write your answers in terms of m, g and R.

†237

59. Two flywheels and a drive belt
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The flywheel of a motor is connected to the flywheel of an electric generator by a drive
belt. The flywheels are of equal size each of radius R. While the flywheels are rotating
the tension in the upper and lower portions of the drive belt are T1 and T2 respectively.
The drive belt exerts a torque τ = (T2 − T1)R on the generator (around its center). The
coefficient of static friction between the drive belt and each flywheel is µs. Assume the
tension is as high as possible with no slipping between the belt and the flywheel, and that
the drive belt is massless.

a) Derive a differential expression representing the change of tension along the portion
of the belt in contact with one of the flywheels. That is find the value of dT/T for
one of the two flywheels. dT/T =

(i)
1

µs
dθ

(ii)
1

µsR
dθ

(iii) µsdθ

(iv) Rµsdθ

What is T1?

(i)
τ

R

1

eµsπ − 1

(ii)
τ

R

1

1− e−µsπ

(iii)
τ

R
eµsπ

(iv)
τ

R
e−µsπ

(v)
τ

R
(1− eµsπ)

What is T2?

(i)
τ

R

1

eµsπ − 1
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(ii)
τ

R

1

1− e−µsπ

(iii)
τ

R
eµsπ

(iv)
τ

R
e−µsπ

(v)
τ

R
(1− eµsπ)

†240

60. Hanging rod length

A long rod hangs straight down from one end. How long (in meters) can the rod be before
its weight causes it to break off at the end if it is made of iron? Titanium? Give your
answer in meters.

Use the following values for densities and tensile strengths:

The densities of iron and titanium are 7.8× 103 kg/m3 and 4.5× 103 kg/m3 respectively.

The breaking - ultimate tensile strength: 350 MPa for iron and 450 MPa for titanium
(MPa = 106 N/m2).

†242

61. Bar on rollers

A bar of mass m and negligible height is lying horizontally across and perpendicular to
a pair of counter rotating rollers as shown in the figure. The rollers are separated by a
distance D. There is a coefficient of kinetic friction µk between each roller and the bar.
Assume that the bar remains horizontal and never comes off the rollers, and that its speed
is always less than the surface speed of the rollers. Take the acceleration due to gravity to
be g.

a) Find the normal forces NL and NR exerted by the left and right rollers on the
bar when the center of the bar is displaced a distance x from the position midway
between the rollers.
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b) Find the differential equation governing the horizontal displacement of the bar x(t).

c) The bar is released from rest at x = x0 at t = 0. Find the subsequent location of
the center of the bar, x(t).

Express your answer in terms of x, x0, d, m, µk, t and g as needed.

†242

62. Table problem: Rolling solution

Attach a solid cylinder of mass M and radius R to a horizontal massless spring with
spring constant k so that it can roll without slipping along a horizontal surface. If the
system is released from rest at a position in which the spring is stretched by an amount
x0 what is the period T of simple harmonic motion for the center of mass of the cylinder?
Express your answer in terms of M and k.

†244

63. U-tube

A U-tube open at both ends to atmospheric pressure P0 is filled with an incompressible
fluid of density ρ. The cross-sectional area A of the tube is uniform and the total length
of the column of fluid is L. A piston is used to depress the height of the liquid column
on one side by a distance x0, and then is quickly removed. What is the frequency of the
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ensuing simple harmonic motion? Assume streamline flow and no drag at the walls of
the U-tube. (Hint: use conservation of energy). Express your answer in terms of L and
acceleration due to gravity g.

†245

64. Liquid density

A hydrometer is a device that measures the density of a liquid. The one shown in the
figure has a spherical bulb of radius R attached to a cylindrical stem of radius r and
length `. When placed in a liquid, the device floats as shown in the figure with a length h
of stem protruding. Given that the mass of the hydrometer is M , find the density ρ of
the liquid. Express your answer in terms of M ,R, r, ` and h.

†246

65. Venturi flow meter
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A Venturi flow meter is used to measure the the flow velocity of a water main. The water
main has a diameter of d1 = 40.0 cm, and the constriction has a diameter of d2 = 20.0
cm. The two vertical pipes are open at the top, and the difference in water level between
them is ∆h = 2.0 m. Find the velocity vm (in m/s), and the volumetric flow rate Q (in
m3/s), of the water in the main.

†246

66. Bucket with a hole

A cylindrical bucket has a small hole at the bottom. The water exiting the hole has
velocity v. What is the depth, h, of the water in the bucket?

†248

67. Buoyant force of a balloon

Helium balloons are used regularly in scientific research. A typical balloon would reach an
altitude of 40.0 km with an air density of 4.3× 10−3 kg/m3. At this altitude the helium
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in the balloon would expand to 540 000.0 m3. Take g = 10 m/s2. Find the buoyant force
on the balloon.

†249
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Chapter 4

Relativity
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4.1 Special relativity

When particles move Extremely FastTM, Newtonian Dynamics becomes inaccurate and is
replaced by Einstein’s Special Theory of Relativity (1905).

Its effects are noticeable only when particles approach to the speed of light,

c = 299 792 458 m s−1 ≈ 3× 108 m s−1

This is really fast.

The Special Theory of Relativity rests on the following postulate:

The laws of physics are the same in all inertial frames

This is the principle of relativity familiar to Galileo. Galilean relativity mentioned in
the first chapter satisfies this postulate for dynamics. People then thought that Galilean
relativity is what the world obeys. However, it turns out that there is a whole family of
solutions that satisfy the postulate (for dynamics), and Galilean relativity is just one of
them.

This is not a problem (yet), since Galilean relativity seems so intuitive, and we might as
well take it to be the true one. However, it turns out that solving Maxwell’s equations of
electromagnetism gives an explicit value of the speed of light, c. This is independent of
the frame of reference. So the speed of light must be the same in every inertial frame.

This is not compatible with Galilean relativity.

Consider the two inertial frames S and S ′, moving with relative velocity v. Then if light
has velocity c in S, then Galilean relativity predicts it has velocity c− v in S ′, which is
wrong.

Therefore, we need to find a different solution to the principle of relativity that preserves
the speed of light.

4.1.1 The Lorentz transformation

Consider again inertial frames S and S ′ whose origins coincide at t = t′ = 0. For now,
neglect the y and z directions, and consider the relationship between (x, t) and (x′, t′).
The general form is

x′ = f(x, t), t′ = g(x, t),

for some functions f and g. This is not very helpful.

In any inertial frame, a free particle moves with constant velocity. So straight lines in
(x, t) must map into straight lines in (x′, t′). Therefore the relationship must be linear.

Given that the origins of S and S ′ coincide at t = t′ = 0, and S ′ moves with velocity v
relative to S, we know that the line x = vt must map into x′ = 0.

Combining these two information, the transformation must be of the form

x′ = γ(x− vt), (1)
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for some factor γ that may depend on |v| (not v itself. We can use symmetry arguments
to show that γ should take the same value for velocities v and −v).

Note that Galilean transformation is compatible with this – just take γ to be always 1.

Now reverse the roles of the frames. From the perspective S ′, S moves with velocity −v.
A similar argument leads to

x = γ(x′ + vt′), (2)

with the same factor γ, since γ only depends on |v|. Now consider a light ray (or photon)
passing through the origin x = x′ = 0 at t = t′ = 0. Its trajectory in S is

x = ct.

We want a γ such that the trajectory in S ′ is

x′ = ct′

as well, so that the speed of light is the same in each frame. Substitute these into (1) and
(2)

ct′ = γ(c− v)t

ct = γ(c+ v)t′

Multiply the two equations together and divide by tt′ to obtain

c2 = γ2(c2 − v2).

So

γ =

√
c2

c2 − v2
=

1√
1− (v/c)2

.

Definition 86 (Lorentz factor). The Lorentz factor is

γ =
1√

1− (v/c)2
.

Note that

– γ ≥ 1 and is an increasing function of |v|.

– When vLc, then γ ≈ 1, and we recover the Galilean transformation.

– When |v| → c, then γ →∞.

– If |v| ≥ c, then γ is imaginary, which is physically impossible (or at least weird).

– If we take c→∞, then γ = 1. So Galilean transformation is the transformation we
will have if light is infinitely fast. Alternatively, in the world of Special Relativity,
the speed of light is “infinitely fast”.
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v
c

γ

1

For the sense of scale, we have the following values of γ at different speeds:

– γ = 2 when v = 0.866c.

– γ = 10 when v = 0.9949.

– γ = 20 when v = 0.999c.

We still have to solve for the relation between t and t′. Eliminate x between (1) and (2)
to obtain

x = γ(γ(x− vt) + vt′).

So
t′ = γt− (1− γ−2)

γx

v
= γ

(
t− v

c2
x
)
.

So we have

Law (Principle of Special Relativity). Let S and S ′ be inertial frames, moving at the
relative velocity of v. Then

x′ = γ(x− vt)

t′ = γ
(
t− v

c2
x
)
,

where

γ =
1√

1− (v/c)2
.

This is the Lorentz transformations in the standard configuration (in one spatial
dimension).

The above is the form the Lorentz transformation is usually written, and is convenient for
actual calculations. However, this lacks symmetry between space and time. To display
the symmetry, one approach is to use units such that c = 1. Then we have

x′ = γ(x− vt),
t′ = γ(t− vx).
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Alternatively, if we want to keep our c’s, instead of comparing x and t, which have different
units, we can compare x and ct. Then we have

x′ = γ
(
x− v

c
(ct)
)
,

ct′ = γ
(
ct− v

c
x
)
.

Symmetries aside, to express x, t in terms of x′, t′, we can invert this linear mapping to
find (after some algebra)

x = γ(x′ + vt′)

t = γ
(
t′ +

v

c2
x′
)

Directions perpendicular to the relative motion of the frames are unaffected:

y′ = y

z′ = z

Now we check that the speed of light is really invariant:

For a light ray travelling in the x direction in S:

x = ct, y = 0, z = 0.

In S ′, we have
x′

t′
=

γ(x− vt)
γ(t− vx/c2)

=
(c− v)t

(1− v/c)t
= c,

as required.

For a light ray travelling in the Y direction in S,

x = 0, y = ct, z = 0.

In S ′,
x′

t′
=

γ(x− vt)
γ(t− vx/c2)

= −v,

and
y′

t′
=

y

γ(t− vx/c2
=
c

γ
,

and
z′ = 0.

So the speed of light is √
x′2 + y′2

t′
=
√
v2 + γ−2c2 = c,

as required.
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More generally, the Lorentz transformation implies

c2t′2 − r′2 = c2t′2 − x′2 − y′2 − z′2

= c2γ2
(
t− v

c2
x
)2

− γ2(x− vt)2 − y2 − z2

= γ2

(
1− v2

c2

)
(c2t2 − x2)− y2 − z2

= c2t2 − x2 − y2 − z2

= c2t2 − r2.

We say that the quantity c2t2 − x2 − y2 − z2 is Lorentz-invariant.

So if r
t

= c, then r′

t′
= c also.

4.1.2 Spacetime diagrams

It is often helpful to plot out what is happening on a diagram. We plot them on a graph,
where the position x is on the horizontal axis and the time ct is on the vertical axis. We
use ct instead of t so that the dimensions make sense.

x

ct

world line

P

Definition 87 (Spacetime). The union of space and time in special relativity is called
Minkowski spacetime. Each point P represents an event, labelled by coordinates
(ct, x) (note the order!).

A particle traces out a world line in spacetime, which is straight if the particle moves
uniformly.

Light rays moving in the x direction have world lines inclined at 45◦.

x

ct
light raylight ray

We can also draw the axes of S ′, moving in the x direction at velocity v relative to S. The
ct′ axis corresponds to x′ = 0, i.e. x = vt. The x′ axis corresponds to t′ = 0, i.e. t = vx/c2.
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x

ct

x′

ct′

Note that the x′ and ct′ axes are not orthogonal, but are symmetrical about the diagonal
(dashed line). So they agree on where the world line of a light ray should lie on.

4.1.3 Relativistic physics

Now we can look at all sorts of relativistic weirdness!

Simultaneity

The first relativistic weirdness is that different frames disagree on whether two evens are
simultaneous

Definition 88 (Simultaneous events). We say two events P1 and P2 are simultaneous in
the frame S if t1 = t2.

They are represented in the following spacetime diagram by horizontal dashed lines.

However, events that are simultaneous in S ′ have equal values of t′, and so lie on lines

ct− v

c
x = constant.

x

ct

P1 P2

x′

ct′

The lines of simultaneity of S ′ and those of S are different, and events simultaneous in S
need not be simultaneous in S ′. So simultaneity is relative. S thinks P1 and P2 happened
at the same time, while S ′ thinks P2 happens first.

Note that this is genuine disagreement. It is not due to effects like, it takes time for the
light conveying the information to different observers. Our account above already takes
that into account (since the whole discussion does not involve specific observers).
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Causality

Although different people may disagree on the temporal order of events, the consistent
ordering of cause and effect can be ensured.

Since things can only travel at at most the speed of light, P cannot affect R if R happens
a millisecond after P but is at millions of galaxies away. We can draw a light cone that
denotes the regions in which things can be influenced by P . These are the regions of
space-time light (or any other particle) can possibly travel to. P can only influence events
within its future light cone, and be influenced by events within its past light cone.

x

ct

P

Q

R

All observers agree that Q occurs after P . Different observers may disagree on the temporal
ordering of P and R. However, since nothing can travel faster than light, P and R cannot
influence each other. Since everyone agrees on how fast light travels, they also agree on
the light cones, and hence causality. So philosophers are happy.

Time dilation

Suppose we have a clock that is stationary in S ′ (which travels at constant velocity v with
respect to inertial frame S) ticks at constant intervals ∆t′. What is the interval between
ticks in S?

Lorentz transformation gives

t = γ
(
t′ +

v

c2
x′
)
.

Since x′ = constant for the clock, we have

∆t = γ∆t′ > ∆t′.

So the interval measured in S is greater! So moving clocks run slowly.

A non-mathematical explanation comes from Feynman (not lectured): Suppose we have a
very simple clock: We send a light beam towards a mirror, and wait for it to reflect back.
When the clock detects the reflected light, it ticks, and then sends the next light beam.

Then the interval between two ticks is the distance 2d divided by the speed of light.

d
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From the point of view of an observer moving downwards, by the time light reaches the
right mirror, it would have moved down a bit. So S sees

d

a

However, the distance travelled by the light beam is now
√

(2d)2 + a2 > 2d. Since they
agree on the speed of light, it must have taken longer for the clock to receive the reflected
light in S. So the interval between ticks are longer.

By the principle of relativity, all clocks must measure the same time dilation, or else we
can compare the two clocks and know if we are “moving”.

This is famously evidenced by muons. Their half-life is around 2 microseconds (i.e. on
average they decay to something else after around 2 microseconds). They are created
when cosmic rays bombard the atmosphere. However, even if they travel at the speed of
light, 2 microseconds only allows it to travel 600 m, certainly not sufficient to reach the
surface of Earth. However, we observe lots of muons on Earth. This is because muons
are travelling so fast that their clocks run really slowly.

The twin paradox

Consider two twins: Luke and Leia. Luke stays at home. Leia travels at a constant speed
v to a distant planet P , turns around, and returns at the same speed.

In Luke’s frame of reference,

x

ct

Luke
cT

2cT

Leia: x = vt

A (Leia’s arrival)

R

Leia’s arrival (A) at P has coordinates

(ct, x) = (cT, vT ).

The time experienced by Leia on her outward journey is

T ′ = γ
(
T − v

c2
T
)

=
T

γ
.

By Leia’s return R, Luke has aged by 2T , but Leia has aged by 2T
γ
< 2T . So she is

younger than Luke, because of time dilation.
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The paradox is: From Leia’s perspective, Luke travelled away from her at speed and the
returned, so he should be younger than her!

Why is the problem not symmetric?

We can draw Leia’s initial frame of reference in dashed lines:

x

ct

Leia

A

Han

R
ct′

x′
X
Z

In Leia’s frame, by the time she arrives at A, she has experienced a time T ′ = T
γ

as shown
above. This event is simultaneous with event X in Leia’s frame. Then in Luke’s frame,
the coordinates of X are

(ct, x) =

(
cT ′

γ
, 0

)
=

(
cT

γ2
, 0

)
,

obtained through calculations similar to that above. So Leia thinks Luke has aged less by
a factor of 1/γ2. At this stage, the problem is symmetric, and Luke also thinks Leia has
aged less by a factor of 1/γ2.

Things change when Leia turns around and changes frame of reference. To understand
this better, suppose Leia meets a friend, Han, who is just leaving P at speed v. On his
journey back, Han also thinks Luke ages T/γ2. But in his frame of reference, his departure
is simultaneous with Luke’s event Z, not X, since he has different lines of simultaneity.

So the asymmetry between Luke and Leia occurs when Leia turns around. At this point,
she sees Luke age rapidly from X to Z.

Length contraction

A rod of length L′ is stationary in S ′. What is its length in S?

In S ′, then length of the rod is the distance between the two ends at the same time. So
we have

x′

ct′

L′

L′
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In S, we have

x

ct

L

x′
L′

The lines x′ = 0 and x′ = L′ map into x = vt and x = vt + L′/γ. So the length in S is
L = L′/γ < L′. Therefore moving objects are contracted in the direction of motion.

Definition 89 (Proper length). The proper length is the length measured in an object’s
rest frame.

This is analogous to the fact that if you view a bar from an angle, it looks shorter than
if you view it from the front. In relativity, what causes the contraction is not a spatial
rotation, but a spacetime hyperbolic rotation.

Question: does a train of length 2L fit alongside a platform of length L if it travels through
the station at a speed v such that γ = 2?

For the system of observers on the platform, the train contracts to a length 2L/γ = L. So
it fits.

But for the system of observers on the train, the platform contracts to length L/γ = L/2,
which is much too short!

This can be explained by the difference of lines of simultaneity, since length is the distance
between front and back at the same time.

x

ctback of trainfront of train

back of

platform

front of

platform

L
fits in S
doesn’t fit in S ′

Composition of velocities

A particle moves with constant velocity u′ in frame S ′, which moves with velocity v
relative to S. What is its velocity u in S?

The world line of the particle in S ′ is

x′ = u′t′.
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In S, using the inverse Lorentz transformation,

u =
x

t
=

γ(x′ + vt′)

γ(t′ + (v/c2)x′)
=

u′t′ + vt′

t′ + (v/c2)u′t′
=

u′ + v

1 + u′v/c2
.

This is the formula for the relativistic composition of velocities.

The inverse transformation is found by swapping u and u′, and swapping the sign of v, i.e.

u′ =
u− v

1− uv/c2
.

Note the following:

– if u′vLc2, then the transformation reduces to the standard Galilean addition of
velocities u ≈ u′ + v.

– u is a monotonically increasing function of u for any constant v (with |v| < c).

– When u′ = ±c, u = u′ for any v, i.e. the speed of light is constant in all frames of
reference.

– Hence |u′| < c iff |u| < c. This means that we cannot reach the speed of light by
composition of velocities.

4.1.4 Geometry of spacetime

We’ll now look at the geometry of spacetime, and study the properties of vectors in this
spacetime. While spacetime has 4 dimensions, and each point can be represented by 4 real
numbers, this is not ordinary R4. This can be seen when changing coordinate systems,
instead of rotating the axes like in R4, we “squash” the axes towards the diagonal, which
is a hyperbolic rotation. In particular, we will have a different notion of a dot product.
We say that this space has dimension d = 1 + 3.

The invariant interval

In regular Euclidean space, given a vector x, all coordinate systems agree on the length
|x|. In Minkowski space, they agree on something else.

Consider events P and Q with coordinates (ct1, x1) and (ct2, x2) separated by ∆t = t2− t1
and ∆x = x2 − x1.

Definition 90 (Invariant interval). The invariant interval or spacetime interval
between P and Q is defined as

∆s2 = c2∆t2 −∆x2.

Note that this quantity ∆s2 can be both positive or negative — so ∆s might be imaginary!

Proposition. All inertial observers agree on the value of ∆s2.
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Proof.

c2∆t′2 −∆x′2 = c2γ2
(

∆t− v

c2
∆x
)2

− γ2(∆x− v∆t)2

= γ2

(
1− v2

c2

)
(c2∆t2 −∆x2)

= c2∆t2 −∆x2.

In three spatial dimensions,

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2.

We take this as the “distance” between the two points. For two infinitesimally separated
events, we have

Definition 91 (Line element). The line element is

ds2 = c2dt2 − dx2 − dy2 − dz2.

Definition 92 (Timelike, spacelike and lightlike separation). Events with ∆s2 > 0 are
timelike separated. It is possible to find inertial frames in which the two events occur
in the same position, and are purely separated by time. Timelike-separated events lie
within each other’s light cones and can influence one another.

Events with ∆s2 < 0 are spacelike separated. It is possible to find inertial frame
in which the two events occur in the same time, and are purely separated by space.
Spacelike-separated events lie out of each other’s light cones and cannot influence one
another.

Events with ∆s2 = 0 are lightlike or null separated. In all inertial frames, the events
lie on the boundary of each other’s light cones. e.g. different points in the trajectory of a
photon are lightlike separated, hence the name.

Note that ∆s2 = 0 does not imply that P and Q are the same event.

The Lorentz group

The coordinates of an event P in frame S can be written as a 4-vector (i.e. 4-component
vector) X. We write

X =


ct
x
y
z


The invariant interval between the origin and P can be written as an inner product

X ·X = XTηX = c2t2 − x2 − y2 − z2,

where

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .
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4-vectors with X · X > 0 are called timelike, and those X · X < 0 are spacelike. If
X ·X = 0, it is lightlike or null.

A Lorentz transformation is a linear transformation of the coordinates from one frame S
to another S ′, represented by a 4× 4 tensor (“matrix”):

X ′ = ΛX

Lorentz transformations can be defined as those that leave the inner product invariant:

(∀X)(X ′ ·X ′ = X ·X),

which implies the matrix equation
ΛTηΛ = η. (∗)

These also preserve X · Y if X and Y are both 4-vectors.

Two classes of solution to this equation are:

Λ =


1 0 0 0
0
0 R
0

 ,

where R is a 3× 3 orthogonal matrix, which rotates (or reflects) space and leaves time
intact; and

Λ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 ,

where β = v
c
, and γ = 1/

√
1− β2. Here we leave the y and z coordinates intact, and

apply a Lorentz boost along the x direction.

The set of all matrices satisfying equation (∗) form the Lorentz group O(1, 3). It is
generated by rotations and boosts, as defined above, which includes the absurd spatial
reflections and time reversal.

The subgroup with det Λ = +1 is the proper Lorentz group SO(1, 3).

The subgroup that preserves spatial orientation and the direction of time is the restricted
Lorentz group SO+(1, 3). Note that this is different from SO(1, 3), since if you do both
spatial reflection and time reversal, the determinant of the matrix is still positive. We
want to eliminate those as well!

Rapidity

Focus on the upper left 2× 2 matrix of Lorentz boosts in the x direction. Write

Λ[β] =

(
γ −γβ
−γβ γ

)
, γ =

1√
1− β2

.
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Combining two boosts in the x direction, we have

Λ[β1]Λ[β2] =

(
γ1 −γ1β1

−γ1β1 γ1

)(
γ2 −γ2β2

−γ2β2 γ2

)
= Λ

[
β1 + β2

1 + β1β2

]
after some messy algebra. This is just the velocity composition formula as before.

This result does not look nice. This suggests that we might be writing things in the wrong
way.

We can compare this with spatial rotation. Recall that

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
with

R(θ1)R(θ2) = R(θ1 + θ2).

For Lorentz boosts, we can define

Definition 93 (Rapidity). The rapidity of a Lorentz boot is φ such that

β = tanhφ, γ = coshφ, γβ = sinhφ.

Then

Λ[β] =

(
coshφ − sinhφ
− sinhφ coshφ

)
= Λ(φ).

The rapidities add like rotation angles:

Λ(φ1)Λ(φ2) = Λ(φ1 + φ2).

This shows the close relation betweens spatial rotations and Lorentz boosts. Lorentz boots
are simply hyperbolic rotations in spacetime!

4.1.5 Relativistic kinematics

In Newtonian mechanics, we describe a particle by its position x(t), with its velocity being
u(t) = dx

dt
.

In relativity, this is unsatisfactory. In special relativity, space and time can be mixed
together by Lorentz boosts, and we prefer not to single out time from space. For example,
when we write the 4-vector X, we put in both the time and space components, and Lorentz
transformations are 4× 4 matrices that act on X.

In the definition of velocity, however, we are differentiating space with respect to time,
which is rather weird. First of all, we need something to replace time. Recall that we
defined “proper length” as the length in the item in its rest frame. Similarly, we can
define the proper time.

Definition 94 (Proper time). The proper time τ is defined such that

∆τ =
∆s

c

τ is the time experienced by the particle, i.e. the time in the particles rest frame.
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The world line of a particle can be parametrized using the proper time by t(τ) and x(τ).

x

ct

τ1

τ2

Infinitesimal changes are related by

dτ =
ds

c
=

1

c

√
c2 dt2 − |dx|2 =

√
1− |u|

2

c2
dt.

Thus
dt

dτ
= γu

with

γu =
1√

1− |u|2
c2

.

The total time experienced by the particle along a segment of its world line is

T =

∫
dτ =

∫
1

γu
dt.

We can then define the position 4-vector and 4-velocity.

Definition 95 (Position 4-vector and 4-velocty). The position 4-vector is

X(τ) =

(
ct(τ)
x(τ)

)
.

Its 4-velocity is defined as

U =
dX

dτ
=

(
c dt

dτ
dx
dτ

)
=

dt

dτ

(
c
u

)
= γu

(
c
u

)
,

where u = dx
dt

.

Another common notation is

X = (ct,x), U = γu(c,u).

If frames S and S ′ are related by X ′ = ΛX, then the 4-velocity also transforms as
U ′ = ΛU .
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Definition 96 (4-vector). A 4-vector is a 4-component vectors that transforms in this
way under a Lorentz transformation, i.e. X ′ = ΛX.

When using suffix notation, the indices are written above (superscript) instead of below
(subscript). The indices are written with Greek letters which range from 0 to 3. So we
have Xµ instead of Xi, for µ = 0, 1, 2, 3. If we write Xµ instead, it means a different thing.
This will be explained more in-depth in the electromagnetism course (and you’ll get more
confused!).

U is a 4-vector because X is a 4-vector and τ is a Lorentz invariant. Note that dX/dt is
not a 4-vector.

Note that this definition of 4-vector is analogous to that of a tensor — things that
transform nicely according to our rules. Then τ would be a scalar, i.e. rank-0 tensor, while
t is just a number, not a scalar.

For any 4-vector U , the inner product U ·U = U ′ ·U ′ is Lorentz invariant, i.e. the same in
all inertial frames. In the rest frame of the particle, U = (c, 0). So U · U = c2.

In any other frame, Y = γu(c,u). So

Y · Y = γ2
u(c

2 − |u|2) = c2

as expected.

Transformation of velocities revisited

We have seen that velocities cannot be simply added in relativity. However, the 4-velocity
does transform linearly, according to the Lorentz transform:

U ′ = ΛU.

In frame S, consider a particle moving with speed u at an angle θ to the x axis in the xy
plane. This is the most general case for motion not parallel to the Lorentz boost.

Its 4-velocity is

U =


γuc

γuu cos θ
γuu sin θ

0

 , γu =
1√

1− u2/c2
.

With frames S and S ′ in standard configuration (i.e. origin coincide at t = 0, S ′ moving
in x direction with velocity v relative to S),

U ′ =


γu′c

γu′u
′ cos θ′

γu′u
′ sin θ′

0

 =


γv −γvv/c 0 0

−γvv/c γv 0 0
0 0 1 0
0 0 0 1




γuc
γuu cos θ
γuu sin θ

0


Instead of evaluating the whole matrix, we can divide different rows to get useful results.

The ratio of the first two lines gives

u′ cos θ′ =
u cos θ − v
1− uv

c2
cos θ

,
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just like the composition of parallel velocities.

The ratio of the third to second line gives

tan θ′ =
u sin θ

γv(u cos θ − v)
,

which describes aberration, a change in the direction of motion of a particle due to the
motion of the observer. Note that this isn’t just a relativistic effect! If you walk in the
rain, you have to hold your umbrella obliquely since the rain seems to you that they are
coming from an angle. The relativistic part is the γv factor in the denominator.

This is also seen in the aberration of starlight (u = c) due to the Earth’s orbital motion.
This causes small annual changes in the apparent positions of stars.

4-momentum

Definition 97 (4-momentum). The 4-momentum of a particle of mass m is

P = mU = mγu

(
c
u

)
The 4-momentum of a system of particles is the sum of the 4-momentum of the particles,
and is conserved in the absence of external forces.

The spatial components of P are the relativistic 3-momentum,

p = mγuu,

which differs from the Newtonian expression by a factor of γu. Note that |p| → ∞ as
|u| → c.

What is the interpretation of the time component P 0 (i.e. the first time component of the
P vector)? We expand for |u|Lc:

P 0 = mγc =
mc√

1− |u|2/c2
=

1

c

(
mc2 +

1

2
m|u|2 + · · ·

)
.

We have a constant term mc2 plus a kinetic energy term 1
2
m|u|2, plus more tiny terms,

all divided by c. So this suggests that P 0 is indeed the energy for a particle, and the
remaining · · · terms are relativistic corrections for our old formula 1

2
m|u|2 (the mc2 term

will be explained later). So we interpret P as

P =

(
E/c
p

)
Definition 98 (Relativistic energy). The relativistic energy of a particle is E = P 0c.
So

E = mγc2 = mc2 +
1

2
m|u|2 + · · ·
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Note that E →∞ as |u| → c.

For a stationary particle, we obtain

E = mc2.

This implies that mass is a form of energy. m is sometimes called the rest mass.

The energy of a moving particle, mγuc
2, is the sum of the rest energy mc2 and kinetic

energy m(γu − 1)c2.

Since P · P = E2

c2
− |p|2 is a Lorentz invariant (lengths of 4-vectors are always Lorentz

invariant) and equals m2c2 in the particle’s rest frame, we have the general relation
between energy and momentum

E2 = |p|2c2 +m2c4

In Newtonian physics, mass and energy are separately conserved. In relativity, mass is
not conserved. Instead, it is just another form of energy, and the total energy, including
mass energy, is conserved.

Mass can be converged into kinetic energy and vice versa (e.g. atomic bombs!)

Massless particles

Particles with zero mass (m = 0), e.g. photons, can have non-zero momentum and energy
because they travel at the speed of light (γ =∞).

In this case, P · P = 0. So massless particles have light-like (or null) trajectories, and no
proper time can be defined for such particles.

Other massless particles in the Standard Model of particle physics include the gluon.

For these particles, energy and momentum are related by

E2 = |p|2c2.

So
E = |p|c.

Thus

P =
E

c

(
1
n

)
,

where n is a unit (3-)vector in the direction of propagation.

According to quantum mechanics, fundamental “particles” aren’t really particles but have
both particle-like and wave-like properties (if that sounds confusing, yes it is!). Hence we
can assign it a de Broglie wavelength, according to the de Broglie relation:

|p| = h

λ

where h ≈ 6.63× 10−34 m2 kg s−1 is Planck’s constant.

For massless particles, this is consistent with Planck’s relation:

E =
hc

λ
= hν,

where ν = c
λ

is the wave frequency.
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Newton’s second law in special relativity

Definition 99 (4-force). The 4-force is

F =
dP

dτ

This equation is the relativistic counterpart to Newton’s second law.

It is related to the 3-force F by

F = γu

(
F · u/c

F

)
Expanding the definition of the 4-force componentwise, we obtain

dE

dτ
= γuF · u⇒

dE

dt
= F · u

and
dp

dτ
= γuF⇒

dp

dt
= F

Equivalently, for a particle of mass m,

F = mA,

where

A =
dU

dτ

is the 4-acceleration.

We have

U = γu

(
c
u

)
So

A = γu
dU

dt
= γu

(
γ̇uc

γua + γ̇uu.

)
where a = du

dt
and γ̇u = γ3

u
a·u
c2

.

In the instantaneous rest frame of a particle, u = 0 and γu = 1. So

U =

(
c
0

)
, A =

(
0
a

)
Then U ·A = 0. Since this is a Lorentz invariant, we have U ·A = 0 in all frames.
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4.1.6 Particle physics

Many problems can be solved using the conservation of 4-momentum,

P =

(
E/c
p

)
,

for a system of particles.

Definition 100 (Center of momentum frame). The center of momentum (CM)
frame, or zero momentum frame, is an inertial frame in which the total 3-momentum
is
∑

p = 0.

This exists unless the system consists of one or more massless particle moving in a single
direction.

Particle decay

A particle of mass m1 decays into two particles of masses m2 and m2.

We have
P1 = P2 + P3.

i.e.

E1 = E2 + E3

p1 = p2 + p3.

In the CM frame (i.e. the rest frame of the original particle),

E1 = m1c
2 =

√
|p2|2c2 +m2

2c
4 +

√
|p3|2c2 +m2

2c
4

≥ m2c
2 +m3c

2.

So decay is possible only if
m1 ≥ m2 +m3.

(Recall that mass is not conserved in relativity!)

Example. A possible decay path of the Higgs’ particle can be written as

h→ γγ

Higgs’ particle→ 2 photons

This is possible by the above criterion, because mh ≥ 0, while mγ = 0.

The full conservation equation is

Ph =

(
mhc
0

)
= Pγ1 + Pγ2

So

pγ1 = pγ2

Eγ1 = Eγ2 =
1

2
mhc

2.
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Particle scattering

When two particles collide and retain heir identities, the total 4-momentum is conserved:

P1 + P2 = P3 + P4

In the laboratory frame S, suppose that particle 1 travels with speed u and collides with
particle 2 (at rest).

1

2

21
φ
θ

In the CM frame S ′,
p′1 + p′2 = 0 = p′3 + p′4.

Both before and after the collision, the two particles have equal and opposite 3-momentum.

1 2
p1 p2

1

2

p3

p4

The scattering angle θ′ is undetermined and can be thought of as being random. However,
we can derive some conclusions about the angles θ and φ in the laboratory frame.

(staying in S ′ for the moment) Suppose the particles have equal mass m. They then have
the same speed v in S ′.

Choose axes such that

P ′1 =


mγvc
mγvv

0
0

 , P ′2 =


mγvc
−mγvv

0
0


and after the collision,

P ′3 =


mγvc

mγvv cos θ′

mγvv sin θ′

0

 , P ′4 =


mγvc

−mγvv cos θ′

−mγvv sin θ′

0

 .
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We then use the Lorentz transformation to return to the laboratory frame S. The relative
velocity of the frames is v. So the Lorentz transform is

Λ =


γv γvv/c 0 0

γvv/c γv 0 0
0 0 1 0
0 0 0 1


and we find

P1 =


mγuc
mγuu

0
0

 , P2 =


mc
0
0
0


where

u =
2v

1 + v2/c2
,

(cf. velocity composition formula)

Considering the transformations of P ′3 and P ′4, we obtain

tan θ =
sin θ′

γv(1 + cos θ′)
=

1

γv
tan

θ′

2
,

and

tanφ =
sin θ′

γv(1− cos θ′)
=

1

γv
cot

θ′

2
.

Multiplying these expressions together, we obtain

tan θ tanφ =
1

γ2
v

.

So even though we do not know what θ and φ might be, they must be related by this
equation.

In the Newtonian limit, where |v|Lc, we have γv ≈ 1. So

tan θ tanφ = 1,

i.e. the outgoing trajectories are perpendicular in S.

Particle creation

Collide two particles of mass m fast enough, and you create an extra particle of mass M .

P1 + P2 = P3 + P4 + P5,

where P5 is the momentum of the new particle.

In the CM frame,

1 2
v v
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P1 + P2 =

(
2mγvc

0

)
We have

P3 + P4 + P5 =

(
(E3 + E4 + E5)/c

0

)
So

2mγvc
2 = E3 + E4 + E5 ≥ 2mc2 +Mc2.

So in order to create this new particle, we must have

γv ≥ 1 +
M

2m
.

Alternatively, it occurs only if the initial kinetic energy in the CM frame satisfies

2(γv − 1)mc2 ≥Mc2.

If we transform to a frame in which the initial speeds are u and 0 (i.e. stationary target),
then

u =
2v

1 + v2/c2

Then
γu = 2γ2

v − 1.

So we require

γu ≥ 2

(
1 +

M

2m

)2

− 1 = 1 +
2M

m
+
M2

2m
.

This means that the initial kinetic energy in this frame must be

m(γu − 1)c2 ≥
(

2 +
M

2m

)
Mc2,

which could be much larger than Mc2, especially if M � m, which usually the case. For
example, the mass of the Higgs’ boson is 130 times the mass of the proton. So it would
be much advantageous to collide two beams of protons head on, as opposed to hitting a
fixed target.
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Appendix A

Answers to selected exercises

(1) We choose a coordinate system where the origin is the center of the block, +x is in the uphill
direction, and +y is perpendicular to the incline.

The forces we need to worry about are F, mg, and the normal force N. Let’s consider them
together in the x direction. The object is at rest, so via Newton’s second law, the net force is
zero.

F cos θ = mgsinθ

The normal force is perpendicular to the incline, and so the x component is zero. Meanwhile,
the x component of the force F applied must balance out the gravitational force mg sin θ in the
x direction.

It’s always a good idea to test the extremes and ensure the correct trig functions are used.
If θ = 0, we expect there to be no gravitational force at all in the x direction, and indeed
sin(0) = 0. Using the same argument, if θ = 90, the gravitational force should be exclusively in
the x direction, and again, it will be. As for F cos θ, the opposite is true, as it should be.

So far, so good. Next, let’s look at the y direction. Newton’s second law, again:

N = mg cos θ + F sin θ

We now have two equations, and two unknowns (F and N). Let’s write the equations with the
numbers substituted, and solve:

F cos(38◦) = (4 kg)(9.8 m/s2) sin(38◦)

N = (4 kg)(9.8 m/s2) cos(38◦) + F sin(38◦)

The second equation alone gives us

N = (4 kg)(9.8 m/s2) cos(38◦) + F sin(38◦) ≈ 30.89 N + 0.6156F

And the first alone tells us
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F =
(4 kg)(9.8 m/s2) sin(38◦)

cos(38◦)
= 39.2 N tan(38◦) = 30.63 N

So the answer for (b) is 30.63 N, while the first one is 49.75 N.

(2) First, let’s identify the forces involved. There’s the gravitational force mg downwards,
the normal force N straight upwards, and the force from the rope, T , which will need some
decomposition.

Choose a simple coordinate system where +x is to the right, and +y is straight upwards. The
gravitational force is −Mg, purely in the y direction, and the acceleration is a > 0.

Writing Newton’s second law for each of the two axes independently:

Tx = Ma

N + Ty = Mg

We know that Tx = T cos θ, so we can solve for T in terms of the acceleration and mass:

T =
Tx

cos θ
=

Ma

cos θ

Next up, (b): Ty = T sin θ, so the third law equation becomes

N = Mg − T sin θ

If we substitute in the value for T , we find

N = Mg − Ma sin θ

cos θ
= M(g − a tan θ)

... and we are done.

(3) Part a) As usual, let’s start by looking at the forces involved. In the vertical direction, we
have gravitational forces gm1 and gm2 acting on each of the blocks, respectively.
Block m1 (or block 1) pushes downwards on block m2 (or block 2) with that same force gm1,
and via Newton’s third law, we find the reaction force (the normal force, in this case) from block
2 to block 1.

The total forces on block 1 are the gravitational force downwards, and the normal force upwards,
from block 2 to 1. Net force: zero – as it must be, since it is at rest.

As for block 2, the downward forces are as mentioned above gm1 from the upper block, and
gm2 from gravity on the block itself. This is cancelled out by a normal force from the ground on
the block, of magnitude g(m1 +m2). Again, the net force is zero, at it must be.

With the normal force on block 1, we know that the maximum frictional force that will oppose
motion in mass m1 is µsN = µsgm1. As for block 2, there is no friction to the ground, so we
need not worry about the maximum frictional force there.
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If we write a second law equation for mass m1 on its own, and one for the entire system, both
exclusively in the x direction:

F − FFmax = m1a (top block)

F = a(m1 +m2) (entire system)

The acceleration a as seen from an external reference frame is equal for both, since the condition
is that they move together. We can solve the second equation for a, and stick it into the first,
and then solve for F :

F − FFmax = m1
F

m1 +m2

F − F m1

m1 +m2
= FFmax

F

(
1− m1

m1 +m2

)
= FFmax

F =
FFmax

1− m1
m1+m2

=
µsgm1

1− m1
m1+m2

≈ 9.03 N

Part b) We need to reverse the situation a bit. Except for the second law equations and such
from above which clearly change, what else changes? The vertical forces don’t; the maximum
frictional force also doesn’t, as it’s based on the normal force, which is unchanged.
So, the force is now on m2.

It seems like all we need to do is write a new pair of second law equations, again in the x
direction only. One equation remains unchanged, the one for the entire system. However, F no
longer acts on m1!
Instead, it holds on via the frictional force, and can only accelerate together as long as that is
“strong” enough.

If we push the lower block towards the right with too much force, what will happen? The upper
block will glide “backwards”, relative to the lower block. That means that the frictional force is
now in the forward direction! Indeed, it’s the only force acting on m1 (horizontally), so we find

FFmax = m1a (top block)

F = a(m1 +m2) (entire system)

Solving the first equation for a and substituting into the second:

F =
FFmax
m1

(m1 +m2)

=
µsgm1

m1
(m1 +m2)

= µsg(m1 +m2)

That’s the second and final answer!
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(4) By symmetry the tension T in each segment is equal so since the system is in equilibrium
the sum of the horizontal forces is zero:

2T cos(−α/2) = F

yielding

T =
F

2 cos(α/2)
≈ 125.67 N

And we are done!

(5) see: https://www.youtube.com/watch?v=9NS0JcjNdp4

(6) Since m1 is much greater than m2, plus the fact that they only give us the kinetic friction
coefficient, along with “and you may assume that block 1 never reaches the table”, I think
it’s quite safe to assume the system will accelerate “counterclockwise”, so that m1 slides down
towards the table.

If we draw up a free-body diagram, we find the following forces acting on block m1, assuming
a coordinate system where +x is downhill and +y is perpendicular to the surface (diagonally
upwards to the left):

– m1g cos θ acting in the −y direction

– N = m1g cos θ acting in the +y direction, to cancel out the gravitational force

– m1g sin θ acting in the +x direction

– Ff = µN = µm1g cos θ acting in the −x direction

– T (unknown magnitude) acting in the −x direction

As for the mass m2, there are only two forces:

– m2g acting downwards (which we call −y in another coordinate system)

– T acting upwards, to counteract gravity (partially, not entirely)

In both cases, the net force must equal the object’s mass times the acceleration, which will be
the same for both due to the inextensible string that connects them. We can write two Newton’s
second law equations, and find

m1a = m1g sin θ − T − µm1g cos θ

m2a = T −m2g

We can solve the second equation for T and substitute it into the first to find the acceleration:

169

https://www.youtube.com/watch?v=9NS0JcjNdp4


m1a = m1g sin θ − (m2a+m2g)− µm1g cos θ

m1a+m2a = m1g sin θ −m2g − µm1g cos θ

a(m1 +m2) = m1g sin θ −m2g − µm1g cos θ

a =
m1g sin θ −m2g − µm1g cos θ

m1 +m2
≈ 0.697 m/s2

That answers part (a).

Part b)

We use the basic kinematics equation, with x0 = 0 and v0 = 0:

1

2
at2 =

0.697 m/s2

2
(0.47 s2) ≈ 0.0769 m ≈ 7.7 cm

(7) Since m2 is much greater than m1, m2 will slide downhill and m1 uphill... until they slide off
each other, that is. The only other possibility is that a = 0 and that the system is in equilibrium,
because the friction is great enough. I will assume the answer is not zero, though!

Drawing a free-body diagram (a must for most of these questions, but especially this one), we
find a lot of forces.
As usual, I chose a coordinate system with x parallel to the incline, and y perpendicular. +x is
downhill, for no reason in particular.

On block m1, there is friction, gravity/normal force (gravity in 2 dimensions) and tension. On
block m2, there is also gravity in two dimensions and a normal force, but we don’t need to pay
much attention to the y forces, since there is no friction on the ramp. We know that the normal
force will cancel gravity, but that’s about it for its usefulness. In addition to those, there’s
tension and a third law reaction force for the friction.

Let’s try to write Newton’s second law equations in the x direction. I will add up downhill
forces, subtract uphill forces, and set it all equal to the mass times acceleration:

m1g sin θ + µm1g cos θ − T = −m1a

m2g sin θ − T − µm1g cos θ = m2a

Not very pretty, is it? I will admit, it took me a few tries to get it right; I first forgot about the
third law reaction force for the friction (there’s a frictional force uphill on the second block!).
As for directions, the first equation has −m1a since the acceleration is positive downhill, but
the motion will surely be uphill. The second equation has it without the minus sign, since that
block will indeed move downhill.

Let’s try to solve this by addition; that is, add the left sides to a new left side, and the two right
sides to a new right side. The friction should cancel, so finding a should be less painful than by
substitution.

m1g sin θ + µm1g cos θ − T +m2g sin θ − T − µm1g cos θ = −m1a+m2a

m1g sin θ − 2T +m2g sin θ = −m1a+m2a

g sin θ(m1 +m2)− 2T = a(m2 −m1)

a =
g sin θ(m1 +m2)− 2T

m2 −m1
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Unfortunately, that doesn’t quite get us all the way; we don’t know T ! Let’s solve for it from,
say, the second equation (either should work, and they’re equally complex, so I just picked one).
I suppose we’ll do substitution after all:

T = m2g sin θ − µm1g cos θ −m2a

T = g(m2 sin θ − µm1 cos θ)−m2a

Combining the two, we get... this monstrosity, which we need to solve for a again:

a =
g sin θ(m1 +m2)− 2(gm2 sin θ − gµm1 cos θ −m2a)

m2 −m1

a =
g sin θ(m1 +m2)− 2gm2 sin θ + 2gµm1 cos θ + 2m2a

m2 −m1

a =
g sin θ(m1 +m2)− 2gm2 sin θ + 2gµm1 cos θ

m2 −m1
+

2m2a

m2 −m1

a

(
1− 2m2

m2 −m1

)
=
g sin θ(m1 +m2)− 2gm2 sin θ + 2gµm1 cos θ

m2 −m1

a =
g sin θ(m1 +m2)− 2gm2 sin θ + 2gµm1 cos θ

m2 −m1
· 1

1− 2m2
m2−m1

Goodness, I could use Mathematica to simplify that, but it is accepted as correct!

For the sake of readability, here’s a simplified version:

a =
g(sin θ(m2 −m1))− 2gm1µ cos θ

m1 +m2

(8) Okay, so let’s see. The mass moves in a circle at constant speed: uniform circular motion.
We don’t know ω or T , though, as that’s what we are looking for. We do know the angle and
the rope’s length, so we should be able to calculate the radius of the (horizontal) circle traced
out by the mass itself, however.

In fact, if we forget about the third dimension, we have a very simple right triangle formed by
the rope and the axes. We can see that

sinβ =
r

`
r = ` sinβ

I will use cylindrical coordinates for this problem; that is, r̂ is radially outwards, θ̂ is tangential
to the traced out circle (positive counterclockwise, as the motion is), and ẑ is upwards.

There is a centripetal acceleration

ac = ω2(−r)

= ω2` sinβ(−r̂)

=
4π2

T 2
` sinβ(−r̂)
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towards the center of the traced circle, caused by a centripetal force m times the above.

What other forces are there? Well, there’s certainly gravity, −mg if we call upwards +z. There’s
the tension in the string, FT (T is used for the period) which consists of z and r components.
Let’s decompose the tension.

FTz = FT cosβ

FTr = FT sinβ

The centripetal force is purely in the −r̂ direction, so we don’t need to decompose that. Neither
do we need to decompose gravity, which is purely in the −ẑ direction.

The net force on the mass must be the centripetal force, or there wouldn’t be uniform circular
motion. The z component of the tension must cancel out gravity, too, or the mass wouldn’t
move in a horizontal plane, as it does.
Time for Newton’s second law. Let’s just gather a list of the forces first, so there’s no confusion
while writing the equations. In the r axis, we have the centripetal force Fr = acm inward, and
the string tension also inward. In other words, the string tension provides (or is, essentially)
the centripetal force, and thus the cause of the centripetal acceleration.
In the z axis, there is gravity downwards, and a tension component upwards, which must cancel
out to yield zero net force.
Lastly, in addition to Fr = acm, we can say that ac = ω2r, and we derived an expression
involving the period earlier, so we find, for the r and z axes respectively,

acm = FT sinβ ⇒ 4π2

T 2
`m sin(β) = FT sinβ

mg = FT cosβ

And we now at the point where we have two equations with two unknowns. I’ll try to solve
them manually. Solving the second for FT is easy:

FT =
mg

cosβ

A-ha, nice! It’s already in terms of g, m and β, so that’s the finished answer for part (a)! Now,
let’s substitute that into the other one and solve for the period T , which was surprisingly easy:

4π2

T 2
`m sin(β) =

mg

cosβ
sinβ

4π2

T 2
`m =

mg

cosβ

2π
√
`cosβ
√
g

= T

Tension cannot be negative, so we ignore the second solution.
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(9) The block and a slab each have a gravitational force downwards, and a normal force upwards;
I’ll denote these by NB for the normal force on the block (by the slab), and NS for the normal
force on the slab (by the table):

NB = mBg

NS = g(mB +mS)

This then gives us the frictional forces FF1 (friction that limits the block’s movement) and FF2

(friction that limits the slab’s movement), named after the friction coefficients in the problem
description:

FF1 = µ1mBg

FF2 = µ2g(mB +mS)

What is the direction of these forces? Since the slab moves to the right relative to the table, the
friction force there is to the left.
The block should also move right relative to the slab (how could the slab possibly accelerate
faster?), so that frictional force should also be to the left.

Do we now have all the forces? We have covered the y axis with gravitational forces and normal
forces, and friction on all surfaces. Left are the third law reaction forces due to friction.

Because there is a frictional force FF1 by the slab (middle) on the block (top), there must be a
force of equal magnitude in the opposite direction on the slab, so we have a rightwards force
FF1 on the slab that we must not forget about.
There is also a leftwards frictional force on the slab from the table, so there is a reaction force
there too, but since it’s on the table, which we take to be immovable, we can ignore that force.

All in all we have, ignoring vertical forces, on the block: the external force F to the right, friction
FF1 to the left.
On the slab, we have a reaction force FF1 to the right, and “regular” friction with the table
FF2 towards the left.

Let’s also not forget that they don’t accelerate together; the forces add up to some mBaB and
mSaS , but we can’t solve for a combined a.

We can finally start writing second law equations, and substituting in the actual values. I will
take +x to be towards the right. First the block, then the slab:

F − FF1 = mBaB ⇒ F − µ1mBg = mBaB

FF1 − FF2 = mSaS ⇒ µ1mBg − µ2g(mB +mS) = mSaS

Two equations, two unknowns (the accelerations), how unusual! However, they don’t depend on
each other at all, so this should be simple! Let’s solve them one at a time:

F − µ1mBg = mBaB

aB =
F − µ1mBg

mB
≈ 12.733 m/s2
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µ1mBg − µ2g(mB +mS) = mSaS

aS =
µ1mBg − µ2g(mB +mS)

mS
≈ 8.829 m/s2

Nice!

(10) Now that we’ve learned about the conservation of mechanical energy, this problem should
be easier to solve than it would be with basic kinematics and friction equations. The work done
by gravity should be very easy to find: the work done by gravity is the change in potential
energy, which is mgh if we define h to be the height at which the block starts out, and y = 0 to
be at the ground, so that U = 0 there.

We thus need to find h. The illustration makes it look a bit as if the block starts a bit down
the ramp, but I assume it travels the distance L, or this would be hard to solve indeed! Via
trigonometry, sin θ = h/L so h = L sin θ. That gives us, for the work done by gravity,

Wg = mgL sin θ

... which answers part (b).
Next, we must find the work done by frictional forces as the block slides down. The magnitude
of that force is

|Ff | = µ1N = µ1mg cos θ

We decompose the normal force, since gravity is straight downwards, while the block is on an
incline.
Since the force is constant, and work is force times distance, we can find the work easily as
Wf = |Ff |L. However, let’s keep track of the signs here! The frictional force is always opposing
the motion relative to the surfaces, so it is “backwards” (to the left) while the block only moves
to the right. Therefore, the work is negative:

Wf = −(|Ff |L) = −µ1mgL cos θ

... which answers part (a).
Next up is then the kinetic energy of the block as it has just reached the bottom (or end) of
the incline. The kinetic energy started out at zero, and must now be at a maximum (since the
potential energy is U = 0 at the bottom, by our definition). Without friction, it would be equal
to the work gravity has done, but we must now add the work done by friction (subtract, in a
way, since it is negative, but I prefer “add” to avoid confusion; subtracting a negative would
give a larger value, which is clearly incorrect!).

K = Wf +Wg = mgL sin θ − µ1mgL cos θ

= mgL(sin θ − µ1 cos θ)

The work-energy theorem at work... no pun intended.
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Finally, part (d): how long does the block slide on the rough surface? It has a certain amount of
kinetic energy, above; friction uses up a constant amount per unit length traveled, since it is
constant at µ2N = µ2mg (since the surfaces are now horizontal).

Using d for the distance traveled, the work done by friction is then µ2mgd (W = Fd). That
work equals the initial kinetic energy, so we set them equal and solve for d:

µ2mgd = mgL(sin θ − µ1 cos θ)

d =
L(sin θ − µ1 cos θ)

µ2

That’s all!

(11) Since the spring is ideal, Hooke’s law holds, and we can use the equations we found in
lecture, by solving a differential equation for this simple harmonic oscillator. The equation we
found was

x(t) = A cos(ωt+ ϕ)

where A is the amplitude in meters, ω the angular frequency in radians/second, and ϕ the phase
angle in radians. A and ϕ are found from the initial conditions, while ω can be found as

ω =

√
k

m

The period of oscillation is

T =
2π

ω
= 2π

√
m

k
= 2π

√
7

36
≈ 2.77 s

To find the position as a function of time, we need to find the amplitude and the phase, by using
the initial conditions. At t = 0, x(0) = x0 = 1.8 meters, as given in the problem. We substitute
those values into the x(t) equation:

x0 = A cos(ϕ)

That only gets us so far, since there are two unknowns, A and ϕ. We can find a second equation
in taking the time derivative of x(t) to find v(t), though, since we know the initial velocity.

v(t) =
dx(t)

dt
= −Aω sin(ωt+ ϕ)

At t = 0, this should be equal to −3 (if x0 is positive, then +x̂ is towards the right, but v0 is
towards the left). Combined with the equation for x(t), we have these two equations:
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x0 = A cos(ϕ)

−v0 = −Aω sin(ϕ)

−x0

v0
= − cos(ϕ)

ω sin(ϕ)

ω
x0

v0
=

1

tanϕ

arctan
v0

ωx0
= ϕ ≈ 0.6338 rad ≈ 36.31◦

Solving for A should now be dead simple, using the equation x0 = A cos(ϕ):

1.8 = 0.80578A

A = 2.23 m

ω, using the formula above, is about 2.2678 rad/s, so all in all, the formula for x(t) is

x(t) = 2.23 cos(2.2678t+ 0.6338)

Evaluated at t = 0, this equals 1.7969 m, and the problem states x0 = 1.8 m – close enough; it’s
clearly due to rounding errors.

“(c) How long will it take for the mass to first return to the equilibrium position?”

That happens when x(t) = 0, so we set it up and solve for t:

2.33 cos(2.2678t+ 0.6338) = 0

2.2678t+ 0.6338 =
π

2
(by taking the arccosine of both sides)

t =
π/2− 0.6338

2.2678
≈ 0.413 s

“(d) How long will it take for the spring to first become completely extended?”

I assume that by “completely extended”, they mean when it is as long as it will ever become –
since it is at its natural length at x = 0, which is what we found above. Since the initial velocity
is in the “extending direction”, this should happen the first time v = 0, so let’s set the derivative,
which we found earlier, equal to zero:

−Aω sin(ωt+ ϕ) = 0

−2.33 · 2.2678 sin(2.2678t+ 0.6338) = 0

sin(2.2678t+ 0.6338) = 0

2.2678t+ 0.6338 = π (by taking the arcsine of both sides)

t =
π − 0.6338

2.2678
≈ 1.106 s
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I chose π instead of 0 for the arcsine because choosing 0 yields a negative time, which is clearly
incorrect.
Honestly, I’m not completely happy with this solution, but it worked, at least.

(12) This problem can be conceptualized similarly to problem 2, i.e. conservation of energy.
The block has an initial kinetic energy of K = 1

2mv
2
i = 32 joule; by definition, that kinetic

energy must go down to 0 when v = 0, which is of course when it first comes to a halt. Part
of the kinetic energy will be eaten up by friction (turned into heat, mostly), and part will be
transferred into the spring and stored there as potential energy.

The kinetic friction force is µN = µmg, which is constant regardless of position or velocity; the
direction is opposite the motion, so to the left here, −x̂. The spring’s force is −kx x̂, also to the
left.

The work done by the forces together equals the sum of the forces times the distance x the block
travels; this work then equals the initial kinetic energy of the block. After having set the two
equal, we can solve for x, which is how far the spring has compressed (and how far the block has
traveled, after the “collision” with the spring). We can either set the sum of them equal to zero,
or set the two work quantities equal, which is the same thing. I chose the latter:

1

2
mv2

i = x (µmg + kx)

Ah, but here’s a snag: kx, the force from the spring, is not constant! It is 0 at the start, kx only
at the end of the motion, and somewhere in between for the rest of the time. However, it is
linear, which is good news for us! That means we can find the average force simply as kx

2 , and
keep going, with no calculus:

1

2
mv2

i = x (µmg + 0.5kx)

1

2
mv2

i = xµmg + 0.5kx2

mv2
i

k
= 2x

µmg

k
+ x2

x2 +
2µmg

k
x− mv2

i

k
= 0

Using the quadratic formula, x =
−b±

√
b2 − 4ac

2a
:

x = −µmg
k
±

√(
2µmg
k

)2
+

4mv2
i

k

2

If we stick some values into that mess, we find

x = −2.075± 2.88195

Since the answer is clearly positive as defined in the problem, it must be x = −2.075 + 2.88195 =
0.80695 ≈ 0.807 m.
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(13) Okay, let’s see. There is no friction, so we should be able to rely on conservation of energy
to find the initial velocity from the spring’s compression. It is compressed a distance d, with
a spring constant k. Now, unfortunately, I don’t know how to calculate the stored potential
energy in a spring; it’s a common formula, easy to find – but I would prefer to figure it out
myself! Looking up a formula doesn’t teach you much, but deriving it yourself can be very
helpful indeed, especially if you’ve never seen it before.

So, let’s take a sidestep for a moment.

Spring forces are conservative, so the amount of work done in compressing a spring should equal
the amount of potential energy stored in it. We need to exert a force F (t) = kx(t) to compress
a spring, where x(t) is the amount we have compressed it so far. The total work done, and the
total energy stored, must therefore be the integral of this:

Uspring =

∫ d

0
F (t) dx =

∫ d

0
kx dx = k

[x2

2

]d
0

= k
d2

2
=

1

2
kd2

Neat! It looks a lot like the equation for kinetic energy (and many other equations in physics,
for that matter).

Now that we know how much energy is stored in the spring when the bead comes to a temporary
halt, before being “shot out” again, we can find v0, in case we need it later. The energy stored
in the spring must come exclusively from the bead’s kinetic energy (some of which come from
gravity). If we define gravitational potential energy as 0 at the bottom, then it must be be
2mgR at the top of the loop.

The spring starts out with no stored energy, while the bead starts out with its kinetic energy

KE =
1

2
mv2

0 and its gravitational potential energy 2mgR. Since there is no friction or other

resistive forces, the sum of all these must be conserved.

The speed at point A can be found by finding the bead’s kinetic energy at that point, which is
the sum of its initial kinetic energy and potential energy, minus the energy used up working
against gravity, mgR, to reach point A:

1

2
mv2

A =
1

2
mv2

0 + 2mgR−mgR

mv2
A = mv2

0 + 2mgR

vA =
√
v2

0 + 2gR

We can find v0. When the bead has compressed the spring fully, all of the initial kinetic energy
plus all of the gravitational potential energy is now stored in the spring, so we can equate them:

1

2
mv2

0 + 2mgR =
1

2
kd2

mv2
0 + 4mgR = kd2

v2
0 =

kd2 − 4mgR

m

v0 =

√
kd2 − 4mgR

m
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v2
0 is what we need to find vA, however:

vA =

√
kd2 − 4mgR

m
+ 2gR

Almost there! Now that we know the speed at A, we can apply the formula for centripetal

acceleration, |ac| =
v2

r
, and then multiply by the mass m to find the centripetal force.

The normal force from the track is the only possible source for this centripetal force, which is
necessary for the bead to move along the (semi)circular track. Therefore, we find the centripetal
force:

N = m
v2
A

R
=
m

R

(
kd2 − 4mgR

m
+ 2gR

)
and that solves the problem!

(14) Well... Unless I’m missing something, I remember the answer from lecture! I’ll still try to
re-derive it, though, to make sure I fully understand the problem. If I do, this shouldn’t take
long.

Okay, so the track is frictionless, and we can use conservation of energy to simplify things. Since
the object is released from rest, its initial potential energy is mgh, assuming U = 0 at y = 0;
since that is my choice to make, I decide it shall be so.

When entering the loop, the potential energy is zero, and the object’s speed is at a maximum,
as is the kinetic energy. It then travels up 2R against gravity, which causes it to lose kinetic
energy again.

Let’s first find the condition for the object not falling down at the middle of the loop. |ac| > g
must be the case, or the object will not move in a circle. This puts a constraint on vtop, the
speed at the top:

ac,top =
v2
top

R
≥ g

Next, we need to figure out what vtop is, as a function of the initial height h. At that height, it
will have a potential energy of mg2R, which is smaller than the mgh it begins with (or it will
never reach that point).

1

2
mv2

top = mgh− 2mgR

v2
top = 2gh− 4gR

vtop =
√

2g(h− 2R)

Now we just need to put the two together, and solve for h.
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2gh− 4gR

R
≥ g

2gh ≥ 5Rg

h ≥ 5

2
R

Since the question is when it “just barely” loses contact, the answer is h =
5

2
R.

(15) I’ll start off by finding d1, not only because it’s the first question, but because it should be
independent of everything else.
For this problem, I choose a coordinate system of one axis, y, which is positive downwards, and
has its origin at the spring’s natural length. In other words, y = +d1 when the system is at
equilibrium with the mass.

Since it is in equilibrium, with the spring force upwards, and gravity downwards, with no
acceleration:

d1k = mg

d1 =
mg

k
≈ 0.19818 m

Now then, onto the rest of the problem. I will use the same coordinate system, by the way.

In a horizontal oscillator (as in lecture), there is only one horizontal force, which is that of the
spring. I know (from a quick and dirty test) that the period is the same for this vertical oscillator,
but how can we show that to be the case, now that gravity is present along the oscillating axis?
If this were an exam question, I would not have wasted a try on that assumption!

We can actually show that this system is equivalent to the horizontal one.
We’ve just shown that the “new” equilibrium position is at y = d1. However, we can re-define y
instead, so that y = 0 at that point. Why? Because the block will oscillate around that point,
moving equal amounts up as down from the new zero point, which is not the case for the old
one. In other words, we will get a symmetrical problem if we change the zero point, so we do
just that.

The spring force is upwards, in magnitude k(d1 + y) in this case, now. At y = 0, it should be
kd1, and for greater values of y (further down), it should be greater, so that looks about right.
Gravity is mg, always downwards. Putting this all together, a = ÿ being positive downwards,
we set mÿ equal to the net force, adding the downwards force (gravity) and subtracting the
upwards force (spring force):

mÿ = mg − k(d1 + y)

However, note that since d1 = mg
k , mg = kd1, we can replace mg by kd1:

mÿ = kd1 − k(d1 + y)

mÿ = −ky

ÿ = − k
m
y
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ÿ +
k

m
y = 0

A-ha! This is clearly the exact same differential equation we had earlier in lecture, only we call
the axis y instead of x, so we can safely use the same solutions! That it,

ω =

√
k

m

T = 2π

√
m

k

y = A cos(ωt+ ϕ)

ẏ = −Aω sin(ωt+ ϕ)

f =
ω

2π

We have already solved (a), so let’s calculate the frequency for part (b). Using the above
formulas, we find ω ≈ 7.03562 rad/s, so f ≈ 1.12 Hz.

Next, the spring’s length when the block reaches its highest point. The amplitude of the
oscillation is d2, the amount we extended it from the (new, with the mass) equilibrium point, so
the answer is the spring’s original length plus d1, which is the new equilibrium point, minus the
amplitude d2. All in all, `top = `+ d1 − d2 ≈ 1.098 m.

Finally, the maximum speed of the block. The velocity is given by ẏ(t) above, which is clearly
maximized when the sine function is 1. We don’t care when that happens, only that the
speed at that point is the magnitude of the function’s value when the sine term is 1, i.e.
Aω = d2ω ≈ 2.814 m/s, and that’s it for this question!

(16) The day’s length is 0.7 · 24 hours = 16.8 hours, or 60480 seconds. This must then be the
orbital period of the satellite, since it is supposed to remain over the same point at all times.
I don’t recall the exact formulas we learned from lecture (and if I did, I likely wouldn’t a year
from now), but I do remember that the total mechanical energy is exactly 1

2U . The mechanical
energy is then the sum of the current kinetic energy, and the gravitational potential energy:

1

2

(
−Gmpms

r

)
=

1

2
msv

2
orb −

Gmpms

r

Gmpms

r
= msv

2
orb

1

r
=

v2
orb

Gmp

r =
Gmp

v2
orb

We can then write vorb, the tangential velocity of the satellite, in terms of r and T :

vorb =
2πr

T

v2
orb =

4π2r2

T 2
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Substitute into r (by multiplying by the reciprocal, instead of having a 3-layer fraction):

r = Gmp ·
T 2

4π2r2

r3 =
GmpT

2

4π2

r =

(
GmpT

2

4π2

)1/3

Next, part (b): what is the escape velocity at this distance r from the planet?
I could re-derive the expression for the escape velocity as well, which wasn’t that hard, but I
recall that vesc =

√
2× vorb, and we already have an expression for vorb. Multiplying vorb by

√
2

and then simplifying:

vorb =
2π

T

(
GmpT

2

4π2

)1/3

vesc =
√

2

(
2πGmp

T

)1/3

However, they want the answer in km/sec, so we need to divide that by 1000.

(17) Hitting the water at, say, 0.1 m/s will surely not be lethal, but I assume the condition is
that she doesn’t touch the water whatsoever, or we can’t find an exact answer to the question.

I will use a coordinate system where y increases downwards, and is centered on the bridge; thus
the water is at y = h.
Also, I will use conservation of energy to solve this problem. My first solution was to find the
total energy at y = L, after a period of free fall, and then the total energy at y = h, solving for
L that way. I realized later, reading the forums, that this is unnecessarily complex, so my much
simpler solution is below.

The kinetic energy is zero both just as you jump (since it is done with zero speed) and as you
almost reach the water: the velocity vector reverses at that point, so v = 0 at the lowest point
(which is y = h).

The change in gravitational potential energy is mgh, and all of that goes into the spring. (That’s
the only possibility other than kinetic energy, which we already ruled out).

The energy stored in the spring is given by 1
2kx

2, where x in this case is h − L, the distance
the cord is stretched beyond its natural length of L. (It is the distance to the water, from the
natural length.)

We set the two equal, and solve for L:

mgh =
1

2
k(h− L)2

2mgh = k(h2 − 2hL+ L2)

0 = h2 − 2hL+ L2 − 2mgh

k

0 = L2 − (2h)L−
(

2mgh

k
− h2

)
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We use the quadratic formula:

L = h± 1

2

√
(−2h)2 + 4

(
2mgh

k
− h2

)
L = h− 1

2

√
8mgh

k

L = h−
√

2mgh

k
≈ 61.9942 m

The plus-solution gives L > h, so that is clearly not the solution we want, so I got rid of that
one between steps 1 and 2.

Next, part (b).
Same as last week: the spring’s natural length is L, but at equilibrium, it is stretched a bit
further due to the downwards force mg balancing out with the upwards force kx (where x how
far it has stretched beyond its natural length L). We simply set them equal:

kx = mg

x =
mg

k

So the equilibrium point is at L+ mg
k ≈ 69.22 m. The distance left down to the water is then

h− 69.22 m ≈ 30.78 m.

Full disclosure: my initial solution, which was marked as correct, was actually invalid. The
reason I tried the energy approach later despite the green checkmark was because the equation
I got was way too complex for it to make sense – but that was due to a bit of a miss on my
side: I used both g and the value 10 instead of g, and tried to simplify... 10 and g didn’t cancel,
of course, so it turned out very complex... until I realized, used g everywhere, and it was only
slightly more complex than the answer above.

Anyway, my process there was to treat it as a spring oscillator, like last week’s problem 7.
The problem with that is, I realized, that this cord only acts as a spring when stretched, not
otherwise. I’m not 100% sure why that affects the answer even when we only consider the way
down, but the answer was about 0.7 meters greater. (Close enough to be considered correct!)
The larger the mass is, the further apart the two solutions become. The symbolic solution I got
there was

L = h−
√

2gmhk − g2m2

k
(invalid!)

(18) Alright, let’s start by identifying the forces on the bead. Gravity and spring forces are quite
obvious, but is there anything else? Yes, there is: a normal force by the hoop itself – which they
ask for in part (b).

The centripetal force required for this motion is still mv2

R at all times, but v is not a constant in
this problem (since both gravity and the spring will change the bead’s speed), so the centripetal
force will vary, too.
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Since there is no friction, and gravitational forces and spring forces are both conservative, let’s
try conservation of energy.

The initial energy is all either gravitational potential energy or and spring potential energy.
Let’s set Ug = 0 at the center of the circle; in that case, the initial gravitational potential energy
is mgR, and the final, at θ = 90◦ is 0 by our definition.
There is no initial kinetic energy, since the initial speed was negligible.
What about the spring? It is stretched a distance R beyond its natural length (total length 2R,
natural length R) so it stores a potential energy Us = 1

2kR
2 at the top.

E = mgR+
1

2
kR2

At θ = 90◦, all gravitational potential energy, and part of the spring’s, will have turned into
kinetic energy in the bead.

Here, the kinetic energy is 1
2mv

2. The spring’s stored energy is related to how far it is stretched
beyond R; how far is that, at this point?
If we draw this up, with a θ as a right angle, and we draw a triangle with the spring length as the
hypotenuse, the left and top sides of the triangle are both R in length, so the hypotenuse (the
spring’s current length) is x =

√
2R2 =

√
2×R. It is then stretched d = R

√
2−R = R(

√
2− 1)

beyond its natural length. That gives it a potential energy of Us = 1
2kR

2(2− 2
√

2 + 1).

Adding it all up, and setting it equal to E above, which is the total energy at all times:

1

2
mv2 +

1

2
kR2(2− 2

√
2 + 1) = mgR+

1

2
kR2

mv2 = 2mgR+ kR2 − kR2(2− 2
√

2 + 1)

mv2 = 2mgR+ kR2(1− (2− 2
√

2 + 1))

mv2 = 2mgR+ kR2(−2 + 2
√

2)

v =

√
2mgR+ kR2(−2 + 2

√
2)

m

Next, we need to find the magnitude of the normal force from the hoop on the bead.

The radial force (inwards) must always add up to the centripetal force, so we can decompose

the forces and set that equal to mv2

R .

Gravity at θ = 90◦ is clearly purely tangential; there’s no left-or-right force due to gravity. In
other words, we can ignore gravity for this part.

The spring force, on the other hand, clearly has components both tangential (up/down) and
radial (left/right) at this point.
The total spring force is proportional to its extension past R (its natural length), which we
found earlier, so

Fspr = k(
√

2R2 −R) = k
√

2R− kR = kR(
√

2− 1)

The above is the total spring force; we only want the radial component, which is 1/
√

2 times
that, or Fspr,rad = kR(1− 1/

√
2).
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The normal force is then the centripetal force mv2

R , minus the force in that direction that the
spring provides. (That is, the hoop must provide all the necessary force that the spring isn’t.)

N + kR(1− 1√
2

) =
mv2

R

N + kR(1− 1√
2

) = 2mg + kR(2
√

2− 2)

N = 2mg + kR

(
2
√

2− 2− 1 +
1√
2

)
N = 2mg + kR

(
5√
2
− 3

)
That’s it!

(19) The moon is about 300 times more massive than the planet; I will assume that makes it
valid to use the formulas we’ve already used (that are not valid if the masses are close to each
other; more on that and center on mass very soon – in the next problem).

As with the previous problem regarding orbit, I will use E = 1
2U here – it’s easy to remember,

so why not?

KE + U =
1

2
U

KE +
1

2
U = 0

1

2
mmv

2
orbit −

1

2

Gmpmm

R
= 0

v2
orbit −

Gmp

R
= 0

vorbit =

√
Gmp

R

The period is then simply the distance divided by the velocity:

T =
2πR

vorbit
= 2πR

√
R

Gmp

T = 2π

√
R3

Gmp
= 2π

R3/2√
Gmp

≈ 637 374 s

Finally, we just need to divide this by one “Earth day” of 86400 seconds, so the answer is
637374/86400 ≈ 7.38 days.

(20) Ah, a possibly-scary problem. The concept of center of mass should make it easy, though,
especially since the period is the same for both stars.

The center of mass of a system is a point around which both stars orbit. (In our solar system,
the center of mass is inside the Sun, since it’s such a dominant mass, but it’s not at the Sun’s
center – so the Sun actually makes a tiny orbit around the center of mass).
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Apparently, in the case of two bodies, m1r1 = m2r2 will hold. Combined with s = r1 + r2 where
s is a given, we already have two equations and two unknowns. Too easy.

We can solve the second equation to give r1 = s− r2 and substitute into the first, to give one
equation with one unknown:

m1(s− r2) = m2r2

m1r2 +m2r2 = m1s

r2(m1 +m2) = m1s

r2 =
m1s

m1 +m2

We can then find r2 easily, and r1 = s − r2 as mentioned, so that too is easy. For the given
values,

r1 = 1.411× 1018 m

r2 = 1.909× 1018 m

Now, we just need to find the period. If the bodies orbit as shown, the gravitational attraction
between them is always towards the center of mass. We can find ω this way, by equating the
centripetal force m|ac| = mω2r with the gravitational force on one of the masses:

m1ω
2r1 =

Gm1m2

s2

ω2 =
Gm1m2

m1r1s2

ω =

√
Gm2

r1s2

Finally, T =
2π

ω
:

T = 2π

√
r1s2

Gm2
≈ 7.505× 1017 s ≈ 23.8 billionyears

This is, incredibly enough, correct. The staff admitted in a forum post that the value for the
distances was way, way larger than what is realistic (by 6 orders of magnitude), and so the
period grew to about 109 times larger than expected!

(21) Well, (b) is easy from the graph – it is at x = 1. But let’s avoid getting ahead of ourselves.

The important thing to remember here is that
dU

dx
= −Fx. So far part (a), we need to find the

derivative of U(x), and then remember to negate the answer. Using the chain rule,
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dU

dx
= 4(x2 − 1)(2x) = 4(2x3 − 2x) = 8x3 − 8x

Fx = −dU
dx

= 8x− 8x3 = 8(x− x3)

For a more rigorous solution of part (b), we can find where Fx = 0, and only look at the cases
where x > 0, which is the condition given:

8(x− x3) = 0

x3 = x

x2 = 1

x = ±
√

1

For x > 0, the only solution is x = 1. As a last step, we can confirm whether this is a stable
equilibrium point, or an unstable one. It’s clear from the graph that it’s stable (if there is a
small amount of force on the body, it will tend to roll back down from the “hills”, rather than
roll away, as it would from one of the peaks).

Mathematically, the condition here is that the second derivative of U is positive; that makes
the curve “concave upward”, i.e. looks like a U shape, so that things tend to stay inside. If
d2U

dx2
< 0, the opposite is true, and we are at a peak.

We calculate the second derivative, and stick x = 1 in there:

24x2 − 8
?
> 0

16 > 0

The second derivative is positive, and so this is indeed a stable equilibrium point. If we try this
at x = 0, we find −8, less than zero, and indeed, that is an unstable equilibrium point according
to the graph.

Next, part (c), which asked

“c) Suppose the body starts with zero speed at x = 1.5 m. What is its speed (in m/s) at x = 0 m
and at x = −1 m?”

Okay, so what does this imply? It starts at rest (zero kinetic energy), and we can easily calculate
U(1.5). We can then easily calculate U(0), subtract the two, and we know the change in kinetic
energy, and can solve for v.

KE(0) = U(1.5)− U(0)

1

2
mv2 = 2(1.52 − 1)2 − 2(−1)2

1

2
mv2 = 3.125− 2 = 1.125

v =
√

2.25 = 1.5 m/s
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For x = −1, we simply do the same thing, but use U(−1) instead of U(0).

KE(0) = U(1.5)− U(−1)

1

2
mv2 = 3.125

v =
√

6.25 = 2.5 m/s

(22) Ah, I actually solved this on the forum last week or so, using Gauss’s law. I will try to do
it this way instead, here, though.

At the surface,

Fg = mg =
Gmme

r2
e

The fraction of Earth’s mass inside this smaller radius r is just the ratio of the volume of r to
the volume of re. I will call this mass mr, so

mr =
4/3πr3

4/3πr3
e

me

mr =
r3

r3
e

me

Fi =
Gm

r2

r3

r3
e

me

Fi =
Gmr

r3
e

me

Almost there... we need to get rid of that G, and write it in terms of g instead. We have an
equation for Fg = mg in terms of G and so on above, so we solve that one for G, and substitute
in in here:

G =
gr2
e

me

Fi =
mr

r3
e

me

(
gr2
e

me

)
Fi =

mgr

re

Got it!

Next, part (b): “How long would it take for this object to reach the other side of the earth?
Express your answer in terms of the gravitational constant at the surface of earth g, m, and re
as needed.”

188



Okay, so the force experienced by the mass, at all times, is the force shown above. We can
find the acceleration simply by dividing out m. If the acceleration were constant, we could use
a simple kinematics equation here... but it’s not constant. The velocity will not be constant,
either, so we can’t simply find a value for the velocity and calculate the time from knowing
distance and velocity.

However...! The force is in the form F = kr, where k = mg
re

is a constant, in newtons per
meter. In other words, this looks like a spring problem, in a way. Not exactly, perhaps, but close
enough: consider a spring of near-zero natural length, attached at the center of the Earth. It
will always have an inwards force, which is proportional to r, the distance you’ve stretched it
beyond its original zero length.

Once you’ve passed the center, it will still be an inwards force, that is now trying to make you
stop and reverse. One full oscillation of this system will then bring you all the way to the other
side, and then back, in a symmetric motion. Therefore, the answer is half the period.

T =
2π

ω
= 2π

√
m

k
= 2π

√
m

mg/re
= 2π

√
re
g

Half this is then simply

T

2
= π

√
re
g

(23) All right, let’s see. The spring is compressed, so as we start this experiment, block 2 will
accelerate towards the right. The blocks are “non-identical”, so we can’t say anything qualitative
about the center of mass, other than that it must be somewhere between the blocks (possibly
part-way inside one of them).

This is an easy problem, IF you approach it correctly. If you don’t, it’s very easy to get it wrong.
The approach that is way easier than the others is to consider conservation of momentum. In
the beginning of the problem, there is a net external force on the system – the normal force
from the wall pushing towards the right. Net force means acceleration, so to begin with, there is
an acceleration towards the right, while x2 < d (the spring is compressed), so option (d) is
correct.

When block 2 passes x2 > d, the spring starts to pull together, which moves block 1 towards
the right. When it moves away from the wall, there is no longer a net external force in the
horizontal direction, and we can (and should) apply the conservation of momentum to consider
what may happen next. No matter what the masses of the two blocks are, momentum must be
conserved!

The net momentum of the system is ptot = mtotvcm. The mass is not changing, and ptot must be
held constant and so vcm is a constant after this; option (b) is also correct. All options except
(b) and (d) are thus incorrect.

This was demonstrated in lecture, with an extremely similar system, of two air track-carts and a
spring. After the system had been set in motion, the center of mass held a constant velocity,
despite the oscillating behavior of the two masses. That is exactly what will happen here.

Since the center of mass will hold a constant velocity towards the right, the system will keep
moving towards the right until it hits an obstacle (given that we ignore friction).
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(24) This a bit nonintuitive, based an experience – but it’s important to note the force F is the
same in all cases.

We have found previously that the momentum of a system can be found as mvcm, where m is
the total mass:

ptot = mtotvcm

If we take the time derivative of this equation, we find

dptot
dt

Fext = mtotacm

The change in momentum of the entire system is the same as the net external force, which is the
same as the mass-acceleration product of the center of mass. That gives us, for the acceleration,

acm =
Fext
mtot

. If F = Fext is constant, as it is, and mtot is also constant, then clearly the only

possible answer is that the acceleration is the same for all points, the fourth option.

http://www.youtube.com/watch?v=vWVZ6APXM4w has a great demonstration of this effect.
Make sure you watch the follow-up video http://www.youtube.com/watch?v=N8HrMZB6_dU

and the explanation video http://www.youtube.com/watch?v=BLYoyLcdGPc too. They are a
bit less than 15 minutes combined, but the effect is quite nonintuitive and so the videos are
rather interesting.

(25) Well, let’s see. Since the force is constant, the impulse is simply given by FT . However, I
think we should solve this is a different manner than impulse.

The movement of the center of mass is given by Fext = macm. With a constant force, and thus
a constant acceleration, we can use ∆y = 1

2at
2, with a = acm and t = T .

However, let’s not forget about gravity. Fnet = F −mg, so acm = F/m− g. That gives us, for
the displacement

∆y =
1

2
(
F

m
− g)T 2

(26) First, just in case we need them, let’s write m2 and m3 in terms of m1:

m2 =
m1

4

m3 =
3m1

4

Okay, so what do we know? Ignoring air drag, momentum is conserved in the x direction. After
the explosion, m2v

′
2 +m3v

′
3 = m1v1.

v1 = xm/t, but we don’t know t. However, we do also know (see below) that v
′
2 = −v1.

The smaller piece has a certain momentum after the launch, and the exact opposite momentum
the other way back. Why? Because p = mv, and since it returns to exactly its launch point
along the same path, the v must be the same both ways, only in opposite directions. With
no air drag, it takes the same amount of time to fall from the top down to the ground, and it
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must traverse the same horizontal distance back as it did in getting to the top during that same
time, which implies having the same horizontal velocity, which for a given mass implies the same
momentum (as far as magnitude goes).

The time t taken for m3 to hit the ground is exactly the same as that of m2, since there is no
air drag that could cause any difference in timing. Using conservation of momentum (equation
one), substituting in v1 = xm/t (equation two), substituting in the masses (equation three) and
finally substituting in v

′
3 = (xf − xm)/t:

−m2v1 +m3v
′
3 = m1v1

−m2(
xm
t

) +m3v
′
3 = m1

xm
t

−m1

4
(
xm
t

) +
3m1

4
v
′
3 = m1

xm
t

−m1

4
(
xm
t

) +
3m1

4

(xf − xm)

t
= m1

xm
t

All that remains is simplification. First we can eliminate t, followed by m1 and multiplying it all
by 4:

−m1

4
(xm) +

3m1

4
(xf − xm) = m1xm

−(xm) + 3(xf − xm) = 4xm

And the remainder doesn’t need much explanation:

3xf = 8xm

xf =
8

3
xm

Just as I hoped, all terms could be written in terms of t, so that it could be eliminated, leaving
only known values m1 (which also cancelled) and xm, plus the unknown xf .
Quite a nice result!

(27) We choose a coordinate system centered at the center of the Earth, which is clearly the
simplest choice. The definition of the center of mass is then

rcm =

∑
imiri∑
imi

=
me(0) +mmrem

mm +me
≈ 4656.2 km = 4.6562× 106 m

The term that is zero is the distance from the center of the coordinate system to the center of
the Earth, which is obviously zero given the choice of coordinate system.

(28) The velocity just prior to the collision can be find in several ways, e.g. kinematics or
conservation of energy. I will use the latter.
If we choose U = 0 at the ground, the initial potential energy is mghi, all of which becomes
kinetic energy. We set the two equal and solve for v:
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1

2
mv2 = mghi

v =
√

2ghi

The magnitude of the momentum prior to the collision just p = m
√

2ghi, then.

What about after the collision? Since it returns to a lower height than it was let go from, the
collision must have been partially inelastic, so that kinetic energy was lost. The initial kinetic
energy must be mghf , however. We can then find the new velocity by relating the new kinetic
energy and that:

1

2
m(v′)2 = mghf

v′ =
√

2ghf

The magnitude of the momentum is then p′ = mv′ = m
√

2ghf .

The impulse is just the difference between these, I = pf − pi; however, since we have magnitudes,
we need to consider that the final momentum is really in the opposite direction of the initial
momentum. This turns this subtraction into an addition.

I = m(
√

2ghf +
√

2ghi) = m
√

2g(
√
hf +

√
hi)

Finally, the magnitude of the average force of the ground on the ball. First, we note that

〈F 〉 =
∆p

∆t
, so the average force due to the collision is just the above answer divided by tc.

However, there is a second force involved! Gravity is pulling the ball down with a force mg, and
because it is in contact with the floor, there is a normal force mg, also upwards. The answer is
the sum of the two:

∣∣∣〈F 〉∣∣∣ =
m
√

2g(
√
hf +

√
hi)

tc
+mg

(29) Well, with no other source of energy, we can rule out options (d) and (e) at once. We should
also be able to rule out (c) since this is an inelastic collision. However, let’s do the math.

Momentum is conserved: mAvA +mBvB = (mA +mB)v′. However, vB = 0, so

v′ =
mAvA

mA +mB

The initial kinetic energy is

K =
1

2
mAv

2
A

while final kinetic energy is
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K ′ =
1

2
(mA +mB)(v′)2 =

1

2
(mA +mB)

m2
Av

2
A

(mA +mB)2
=

m2
Av

2
A

2(mA +mB)

The ratio between the two is K ′/K = mA
mA+mB

. However, because mB = mA, we find that the
kinetic energy is half of the initial, the first choice.

(30) So this is an interesting problem. It’s easy to say that the answer is obviously (c), given
that it may appear that all forces are internal, which is in fact not the case. It would be the
case if he caught the ball, but he doesn’t!

As he throws a ball, it gains momentum towards the left, while he (and the cart, via friction
in his shoes) gains momentum towards the right, so that momentum is conserved. Shortly
thereafter, the ball bounces, and gives momentum to the cart towards the left, and the ball
momentum to the right – except that this change is twice as large as when he throw the ball.
In throwing it, he changed the ball’s momentum from 0 to mv, while the bounce changed it
from mv to −mv, a change of 2mv.

Defining the positive direction to be towards the left:
Before the throw, the cart and ball both have 0 momentum.
After the throw, the ball has momentum mv and therefore the cart −mv, so that the sum is
zero.
After the bounce, the ball has momentum −mv and therefore the cart +mv, so that, again, the
sum is zero.

That’s when the problem ends – the ball exits the system, and the momentum is never cancelled
out, so the cart gains a velocity towards the left.
If he caught the ball, we could add:
After the catch, the ball transfers its momentum −mv to the cart, which then gets a momentum
mv −mv = 0, and we are back where we began.

A simpler analysis:
Initial momentum of the system is zero, and final momentum of the ball is towards the right.
That must mean that there is an equal amount of momentum towards the left of the cart, or
momentum would not be conserved!

(31) Spoiler alert: most of the text in this problem is justifying why the solution works, and is
only necessary if you don’t realize it at once. (I didn’t, until it was “too late” to use the simple
solution; I’d already solved it in more complex way.)

Considering the two as a system, there are no external forces, so momentum must be conserved.
Momentum is a vector though, so we need to be careful with signs. If we take v1i to be positive,
the initial velocity of Saturn is negative, and both velocities on the right-hand side are negative.

m1v1i −msvs = −m1v1f −msvsf

We don’t know v1f and we don’t know vsf (the final velocity of Saturn). The latter must change,
even if by an absolutely imperceptible amount.
With two unknowns, we need a second equation.
What more can we say and express as an equation? The total mechanical energy of the system
should certainly be constant, since gravity is a conservative force. The mechanical energy here is
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Km1 + Um1 +Ks + Us = K ′m1 + U ′m1 +K ′s + U ′s

Before we try to calculate this, which will clearly not be pretty, let’s try to simplify it. Grav-
itational potential energy depends on two things: the two masses, and the distance between
them. (Plus G, which is a constant, of course.) Therefore, if the problem starts and ends at the
same distance r, or it starts and ends where r is large enough that U ≈ 0 (keep in mind that
gravitational potential energy is always negative), we can assume that either that Um1 = U ′m1

and Us = U ′s, or that all of those terms are practically zero. This simplifies things a great deal:

Km1 +Ks+ = K ′m1 +K ′s

So now, the condition is that the sum of the kinetic energies are the same before and after, i.e.
the increase in kinetic energy in the spacecraft comes from a decrease in Saturn’s kinetic energy.

With momentum and kinetic energy both conserved, we can solve this in a very simple way:
this is an elastic collision. It doesn’t matter that the force involved is gravity, instead of contact
forces (that are mostly electromagnetic, in the end).

The mass of Saturn is about 1023 times greater than that of the satellite, so to an extremely
good approximation, a reference frame centered on Saturn is the center of mass frame. For the
same reason, the velocity of the COM frame is the velocity of Saturn – the error here is so small
that a pocket calculation would round it away entirely; in fact, I couldn’t get Mathematica to
give me an exact answer! All I can say is that it is much, much less than 1 nanometer per second,
which it gives me for m1 as large as 1011 kg. I think we’ll be OK with this “approximation”!

All we need to do, then, is transfer ourselves into the center of mass frame, by subtracting the
center of mass velocity, find the velocity u1f (using u instead of v in the COM frame), and
transfer back. We transfer into it by subtracting the COM velocity:

u1i = v1i − vcm = v1i − vs = 3× 103 m/s + 9.6× 103 m/s = 12.6× 103 m/s

Since Saturn’s velocity is negative in our coordinate system, the subtraction becomes an addition.
This makes sense, too: the center of mass, inside Saturn, sees the planets heading towards each
other, so the net speed is larger than either of the individual speeds.

Next, we find the velocity after the collision. In the center of mass frame, this is just too easy:
the signs flip. u1f = −u1i = −12.6× 103 m/s.

Finally, we convert back to the reference frame of the outside observer by adding the COM
velocity of −9.6× 103 m/s, and end up with

v1f = u1f +−9.6× 103 m/s = −22.2× 103 m/s

They ask for the speed, though, so we need to drop the minus sign, and we are done.

(32) I have to say that 2 kg for the entire gun and the car seems ridiculously low! If the projectile
flies away at 130 m/s, via conservation of momentum, the rail car will move backwards with a
speed of at least about a quarter of that (that’s just guesswork), which is crazy fast, about the
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speed of a car on a freeway. I can’t see it being less than a tenth, at least. I suppose we’ll see
soon enough.

Intuitively, I have to admit I thought φ = θ and vp = v0, and thought of the recoil as separate
thing, which is clearly not correct. Let’s look at a proper analysis.

Clearly, conservation of momentum will be the main way we approach this problem.
Since this is a two-dimensional problem, there will be a bit more work than in the problems
we’ve seen earlier on.

Momentum will be conserved in the x direction, which will be quite a useful fact. What about
the y direction? Well, the shell clearly gains upwards momentum, but what about the car/gun?
It is pushed down, but can’t move downwards. Instead, the momentum is transferred to the
Earth. After the launch, gravity acts on the shell, and so the y component of its momentum will
change.

Let’s first think about this from the reference frame of the car. Not many strange things happen
here: the shell launches at an angle θ, and moves away from you at v0 (v0 cos θ in the horizontal
direction, and v0 sin θ upwards). So far, so good.

What happens according to an observer on the ground? The vertical component of the shell’s
motion is unchanged, since the car is stationary along the y axis. In other words, this observer
sees the shell move upwards at v0 sin θ m/s, same as someone on the car.
What about the horizontal component? I find it helpful to take things to extremes (even if they
are unrealistic). What if the recoil speed of the car was greater than the shell’s speed?
The horizontal component as seen from the ground would shrink, and since the vertical component
is unchanged, the angle grows, and vp moves closer to v0 sin θ.
This implies that φ > θ, and of course that vp < v0.

What about a more quantitative analysis? Let’s first look at the reference frame of the rail gun.
The equations for the shell is

v0x = v0 cos θ

v0y = v0 sin θ

Nothing strange going on there.
In the reference frame of an outside observer, standing still on the ground, things change. Such
an observer would see the gun speeding towards the left at the same time the shell starts flying
to the right. To him, it is clear that the gunner would see the shell move faster (in the x
direction) than what he sees. In fact, in the limit where the speed of the gun and the speed of
the shell are equal, the shell would move straight up to the outside observer.

The relevant equations here are also not very strange, but we can relate the two sets soon. First,
the easy part:

vpx = vp cosφ

vpy = vp sinφ

To the outside observer (and to the gunner), the rail gun is stationary along the y axis. Therefore,
v0 sin θ = vp sinφ: the two agree on the vertical component. That gives us one useful relationship.

Next, we can relate the x components. The difference there is a simple reference frame shift. As
mentioned above, the outside observer sees the shell having a lower speed along the x axis. The
difference between the two frames is vr.
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vp cosφ = v0 cos θ − vr

Next, we can relate the momenta of the two objects. The initial momentum is zero, in both
reference frames. Let’s write a conservation equation in the outside frame.

mvp cosφ−Mvr = 0

Since vr is a speed in the opposite direction, we need a minus sign there. (Both terms will be
positive, and their difference is zero.)

The final answer for vp has the form

vp = (vp sinφ)x̂+ (v0 sin θ)ŷ

... since the y component is the same in both reference frames. However, we only need to find
the x component, and then calculate φ from that; so we don’t really need to think of φ as an
unknown, as far as solving the system goes. All we need is the x component of the shell, as seen
from the outside reference frame.

We have

mvp cosφ−Mvr = 0

But vp cosφ = (v0 cos θ − vr), so

m(v0 cos θ − vr)−Mvr = 0

mv0 cos θ = vr(M +m)

mv0 cos θ

M +m
= vr

We know all of those variables, so we can find that vr = 30.641 29 m/s. That means we can find
the x component:

vpx = v0 cos θ − vr = 61.283 m/s

We already had vpy in terms of knowns, v0 sin θ:

vpy = v0 sin θ = 91.9239 m/s

We can then finally find vp and the angle φ:

vp =
√
v2
px + v2

py = 110.479 m/s

φ = arctan
vpy
vpx

= 56.31◦
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(33) We can use the simple equations for rotational kinematics which is

f0 =
1

T
=

ω

2π

This implies that ω = 2πf0, which answers part (a).

For part (b), we use α =
ω1 − ω0

∆t
, where ω0 is the initial angular velocity, and ω1 the final

angular velocity.

In this case, ω0 > ω1, so α is negative. However, they asked for the magnitude, so we drop the
sign, and it comes to a complete halt at time t, so ω1 = 0:

α =
ω0

t
=

2πf0

t

Finally, for part (c), we can use ∆θ = ω0t + 1
2αt

2, derived from θ = θ0 + ω0t +
1

2
αt2. α is

negative, so the addition becomes a subtraction:

∆θ = 2πf0t−
1

2

(
2πf0

t

)
t2 = 2πf0t− (πf0) t = πf0t

That’s it!

(34) Hmm, I wonder if there is a particular reason why part (d) is not in joules. The dimension
is equivalent, but they didn’t state “in joules” for whatever reason.

Anyhow, let’s see. Unless otherwise specified, I will consider torques and angular momentum
relative to the center of mass – though angular momentum should be the same for all points,
since this is a rotation about the center of mass, so that disclaimer is probably not necessary.

To start with, we need to calculate the moment of inertia, since we only know it without the
children being included.
Considering them as point masses, the total moment of inertia is just the sum of Icm plus mr2

o

for each of the children:

I = Icm + 2mr2
o = 5098 kgm2

Now, then. The rotational analogue of F = ma is τ = Iα. We can find α very easily if we only
find the torque relative to the center of mass.
The torque is given by τ = R × F, where R is the position vector from the origin to point
where the force is applied. The force is specified as “tangential”, so there is always a right angle
between the two, and R× F = RF , since sin(π/2) = 1. The angular acceleration is then

α =
τ

I
=
RF

I
= 0.0785 rad/s2

Using that, we can find the final angular velocity very easily, using ω = ω0 + αt. t is given as 10
seconds in this case, so
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ωfinal = 0 + αt = 0.785 rad/s

In more familiar units, this is 8.00 seconds per rotation (0.125 Hz or 7.5 rpm).

What is the average power of the person pushing the merry-go-round? We should be able to use
W = F · v here, where v is the tangential velocity, v = ωR. The two are always parallel, and so

P = Fv = FωR

We could find the average using an integral:

Pavg =
1

tb − ta

∫ tb

ta

P (t) dt

... but surely there is a better way. I looked up the relationship for power and torque, and found
that P = τ · ω, which also would require an integration (in fact, it would be the same integral),
since ω is constantly changing.

I’m not sure if there is an easier way, but this integral shouldn’t be very bad, so let’s do it.

Pavg =
1

∆t

∫ ∆t

0
FRω(t) dt

=
FR

∆t

∫ ∆t

0
αt dt

=
FRα

∆t

(
(∆t)2

2

)
=
FRα∆t

2

For these values, Pavg = 157 watts. Quite reasonable.

And at last, the final rotational kinetic energy. The book proves that the work-energy theorem
is applicable to rotational energy, so all the work done (W = Pavg∆t) is turned into rotational
kinetic energy, so the answer is

W = Pavg∆t = 1570 J

As as update after the staff solutions are out, this was technically incorrect – but was accepted
anyway. They wanted the rotational kinetic energy of the merry-go-round alone, without
the children, but I don’t think that was too clear.

We can find the kinetic energy of that alone as
1

2
Icmω

2 ≈ 1540 J, instead. Not a lot harder,

but I do think the question is a bit vague. Since the previous three questions were all found by
considering the children’s moments of inertia, I just assumed we should do here, too.
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(35) Ah, interesting stuff: a non-massless pulley! Granted, we don’t allow for any slipping, and
the string is still of negligible mass... but this is still a considerable step towards some realism.
The string is not massless, however. Remember that when a string is massless, we can prove
that the tension at two different points along the string must have the same magnitude... but in
this case, a difference in tension is the cause of the torque that rotates the pulley! More on that
in a second.

First off, since the string is inextensible, the acceleration and velocity of both masses and the
rope (and the pulley, i.e. the tangential velocity at its edge) must all be the same.
Since m1 > m2, the system will accelerate such that m1 goes downwards, m2 upwards, and the
pulley rotates counterclockwise, as seen from the direction we see it. This means ω for the pulley
will be out of the screen.

The forces on each block are easy to find. Each block has gravity and tension acting on it. I will
take downwards to be the positive direction for block 1, and upwards for block 2, which then
yields a common acceleration a without any trouble with signs and directions.
Let’s then write Newton’s second law equations for the two blocks:

For block 1, m1a = m1g − T1.
For block 2, m2a = T2 −m2g.

The differences in tension will cause a tangential force on the pulley, which causes a torque
relative to its center, which I will call point C. This torque causes a rotation via τC = IαC .

a = αCR (this is just the time derivative of v = ωR), so we can also say that τ =
Ia

R
, so that

a =
τR

I
. The dimension works out to be that of acceleration, which is always a good sign!

What is the torque, then? Well, the tension is tangential, and so the moment arm into the center
becomes the radius R, and the angle is always 90 degrees. That gives us τC = (T1 − T2)R.
We know that the rotation will be counterclockwise, so the torque must be directed out of the
screen. Using R × F where F = T1 − T2 with a leftwards direction, the direction of positive
torque, according to the cross product, is out of the screen – as it should be! (That is assuming
that T1 > T2, which it should be in this case.)

This means we have three equations and three unknowns:

m1a = m1g − T1

m2a = T2 −m2g

a =
2(T1 − T2)

mp

I substituted in I =
1

2
mpR

2 in the last equation, which removed the dependence on R.

I’m never a fan of solving systems of three equations. Can we simplify the task? Solving the
first two for T1 and T2 respectively, we can find T1 − T2 by subtracting the other sides of those
equations:

T1 − T2 = m1g −m1a−m2a−m2g

We can then stick this into the third equation, and solve for a:
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a = 2
g(m1 −m2)− a(m1 +m2)

mp

a

(
1 +

2(m1 +m2)

mp

)
= 2

g(m1 −m2)

mp

a = 2
g(m1 −m2)

mp

1(
1 + 2(m1+m2)

mp

)
a = 2

g(m1 −m2)

mp + 2(m1 +m2)

Not bad!

Next up, how long does it take to move a distance d? a is clearly constant, since there are only

constants in the above equation. Therefore, we can use d = v0t+
1

2
at2 here. v0 = 0, so the first

term disappears. We solve the rest for t:

1

2
at2 = d

t2 =
2d

a

t =

√
2d

a

All that remains is then to stick the above, semi-complex expression into the square root:

t =

√√√√ 2d

2 g(m1−m2)
mp+2(m1+m2)

t =

√
d · mp + 2m1 + 2m2

g(m1 −m2)

(36) Hmm, this looks as if it should be easier than the previous problem.
The cable has negligible mass, so the tension ought to be zero without the mass there. Therefore,
the tension is all due to gravity acting on the block.
Newton’s second low on the block, taking downwards to be positive, is

m2a = m2g − T

The tension then acts on the pulley, in a tangential fashion (as in the last problem, though on the
side this time, instead of the top), so that the torque relative to its center is τC = R×T = RT ,
with the direction being out of the screen (since the rotation will be counterclockwise). R is
then the position vector from the center to the point where the force acts, so the sin θ term is
again always 1, due to the 90 degree angle between the two vectors.

This torque causes an acceleration of the pulley via
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τC = Icα⇒ α =
τC
Ic

=
RT

Ic

a = αR⇒ α =
a

R
, so

a

R
=
RT

Ic

a =
R2T

Ic

Two equations, with a and T as two unknowns. We can solve both for a, sen them equal, and
find T :

g − T

m2
=
R2T

Ic
T

m2
= g − R2T

Ic

T +
m2R

2T

Ic
= m2g

T

(
1 +

m2R
2

Ic

)
= m2g

T = m2g
1(

1 + m2R2

Ic

)
T =

m2g

1 + m2R2

Ic

T =
m2gIc

Ic +m2R2

That then answers part (b). Let’s stick in into the other equation and find a:

a =
R2

Ic

m2gIc
Ic +m2R2

a = g
m2R

2

Ic +m2R2

Finally, the speed of the object as it hits the floor.
As previously, v0 = 0 and a is a constant, so we can use basic kinematics equations... only that
those involve both t and h.

We can solve v = at for t, and find t =
v

a
. Substitute that into the one that relates acceleration

to distance:

1

2
a
(v
a

)2
= h

1

2

v2

a
= h
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v =
√

2ha =

√
2hg

m2R2

Ic +m2R2

And that’s it for this one!

(37) Hmm. Well, unfortunately I don’t have a yo-yo (nor anything similar, like a spool of sewing
thread), so I can’t really try it out! I also have no real intuition of how it behaves here, though I
do know that it rolls away when β is large, and towards you when β is small.

Since sinβ ≈ β for small angles, option 1 cannot be true; it is more likely to roll to the left if
sinβ is large.
Option 2 could be true.
cosβ becomes smaller as the angle grows. Larger angle means more likely to roll to the left, so
smaller cosine also means that. This means we can rule out option 4.

Left are options 2 and 3, though I don’t see any obvious way to choose between the two without
actually making the calculations! Let’s have a look at that.

What can we say about the yo-yo? There are external forces, which also causes external torques.
R1 acts as a moment arm for our pull, for the torque relative to the center of the yo-yo.
There is also the force due to friction. Friction acts along R2, and also causes a torque on the
yo-yo, in the opposite direction to the torque due to the pull.

I will use a coordinate system where leftwards motion is positive.

If we draw a free-body diagram (considering only the center of mass; we should not do this for
torques, since distances matter there) and use P to notate the force due to our pull, we find
P cosβ in the rightwards direction (negative, in this coordinate system), and Ffr towards the
left.

Using Newton’s second law, we can write for the center of mass,

macm = Ffr − P cosβ

We can then calculate the torque due to this pulling force, as R×P; the angle to the position
vector is always 90 degrees, and R, the moment arm, is R1, since the string is wrapped around
R1:

τP = R1P (direction: out of the screen / causes CCW rotation)

There is also a torque due to friction. Again, the angle is always 90 degrees, so R× Ffr is just
the magnitude of the two multiplied together, where the moment arm is now R2 (friction acts
on the outside of the yo-yo):

τfr = R2Ffr (direction: in to the screen / causes CW rotation)

When τfr > τP , there is clockwise rotation, and the yo-yo rolls towards the right. When τP
wins, it moves towards the right.
Since the torque must reverse direction between these two cases, there is also the possibility
that the net torque is zero.
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Net torque (CCW/left): τ = τP − τfr = R1P −R2Ffr

Using the condition that the torque is zero, we can relate Ffr to P :

R1P −R2Ffr = 0

Ffr =
R1

R2
P

Making this substitution into the Newton’s second law equation:

a =
P

m

(
R1

R2
− cosβ

)
This acceleration is positive when the yo-yo accelerates to the left, due to the choice of coordinate
system, so the condition for moving towards the left is that the above expression is greater than
zero. We set up the inequality and solve:

P

m

(
R1

R2
− cosβ

)
> 0

That happens when

R1

R2
> cosβ

which of course is the same as one of the answer options,

cosβ <
R1

R2

So the answer is option 3,

Yo-Yo rolls to the left if cosβ <
R1

R2
, and to the right if cosβ >

R1

R2
.

(38) Torque is the force times the moment arm length, which is easy in this case. The relevant
force is mg, which acts on the center of mass. Since the stick is uniform, the center of mass is at
`
2 . The torque relative to point B is simply

τB = mg
`

2

since the angle between the two vectors is 90 degrees (just after the stick is released).

We can now find the angular acceleration by knowing the torque, via τ = Iα. The moment of
inertia in question is the one for the rod, about its end, since that is the pivot point.
Since the pivot point is clearly not at the center of mass in this case, we need to use the parallel
axis theorem.
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I remember that Ic = 1
12m`

2 for a rod, but we then need to add a term due to the parallel axis
theorem. The distance between the center of mass and this new axis is half the rod’s length, so
via the parallel axis theorem,

IB =
1

12
m`2 +m

(
`

2

)2

Now, using τB = IBα, we can solve for α:

mg
`

2
= α

(
1

12
m`2 +m

(
`

2

)2
)

g
`

2
= α

1

12
`2 + α

`2

4

g = α
1

6
`+ α

`

2

g = α`

(
1

6
+

1

2

)
g

`
= α

(
4

6

)
3g

2`
= α

Next, they want to know the vertical acceleration of the center of mass. α describes the angular
acceleration about point B, that the center of mass undergoes. We can use the relationship
a = αR, and in this case, R = `

2 .

a =
3g

2`

`

2

a =
3g

4

Finally, what is the magnitude of the vertical component of the hinge force at B?
Well, first up, what is hinge force? I haven’t seen that term before, but I assume it is the normal
force from the table on the end of the stick, especially as they give it as N .

It’s clearly not zero, or the stick would just fall right through.
What we do here is to remember the videos and demonstration of an impulse on a ruler. No
matter where on the ruler the force is exerted, the acceleration of the center of mass is affected
in the same way. Therefore, we can use Newton’s second law to relate the net downwards force,
mg −N , with the mass times acceleration of the stick:

mg −N = ma

N = m(g − a)

We know a from above, so we can substitute than in there:
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N = m(g − 3g

4
)

N =
mg

4

(39) In part (a), the disk is fixed. We begin by calculating the total moment of inertia for
rotating about what I will call point P, the point where the rod is mounted to the roof.

For the rod, we use the parallel axis theorem:

Irod,end =
1

12
m`2 +m

(
`

2

)2

=
m`2

3

We also use the parallel axis theorem for the disc. About the disc’s own center of mass,
Icm = 1

2mR
2. We need to add to that the distance to the new axis, which is ` away.

Idisc =
1

2
mR2 +m`2 = m

(
R2

2
+ `2

)
The total moment of inertia for rotation about the pivot point, for the combination is then

IP =
1

6
m(8`2 + 3R2)

Let’s now consider the torque (relative to the pivot point, P). There is a torque due to the rod
(because of gravity acting on its center of mass), and a torque due to the wheel (again, due to
gravity acting on its center of mass). These torques depend on the moment arm length, the
force of gravity, and the sine of the angle between the two, via the cross product definition:

τP,rod = rP × Fg =
`

2
mg sin θ

τP,disc = rP × Fg = `mg sin θ

τP = τP,rod + τP,disc =
3

2
mg` sin θ

This is a restoring torque, that is always trying to get things back to equilibrium. Using Newton’s
second law, or perhaps rather its rotational equivalent τ = Iα, only with a negative sign in front
since it is a restoring torque:

α = − 3

2IP
mg` sin θ

Using α = θ̈, and a small angle approximation sin θ ≈ θ, we get

θ̈ +
3

2IP
mg`θ = 0
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... which is simple harmonic oscillator. This is of course what we wanted all along. The period

is then given by
2π

ω
, where ω2 is the stuff multiplying the square root. We flip that upside down,

take the square root, and multiply by the 2π:

T =
2π

ω
= 2π

√
2IP

3mg`

T = 2π

√
m(8`2 + 3R2))

9mg`

=
2π

3

√
8`2 + 3R2

g`

What happens for part (b)? When the disc is free to spin, it is also free to stay stationary, so
to speak. That is, when it is fixed, it is forced to rotate along with the motion. If we made a
vertical mark at the top of the disk, that mark would turn at an angle θ together with the rod
and the rest of the disc.
Because of this, it has a spin component of moment of inertia of Icm,disk = 1

2mR
2, in addition

to the orbital component of mR2.

With a frictionless bearing, on the other hand, that vertical mark on the disk would be vertical
at all times, which means it is not spinning any more.
There is no torque acting on the disc: gravity acts equally on all points, and since it is attached
in the center with no friction, there can be no torque due to the pin there, either.

This means that the term for the disc’s moment of inertia that is due to the spin disappears,
and Idisc = mR2 – only the orbital part remains.
So we can think of the motion of the disc as having two components: one “orbital”, and one
“spin”. In the previous case, both were present. In this case, when the disc can stay stationary
(have no spin motion at all), only the orbital motion remains, and so only the orbital part of the
moment of inertia remains.

The torque is unchanged, since we calculated that based on the center of mass. What changes is
IP ; the part due to the rod is unchanged, but that due to the disc changes, so that

Idisc = m`2

The total moment of inertia about the pivot point is again the sum of the two moments of
inertia:

IP =
m`2

3
+m`2 =

4m`2

3

That is the only thing that changes, so we stick that into the equation for the period:

T =
2π

ω
= 2π

√
2IP

3mg`
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T = 2π

√
2(4m`2

3 )

3mg`

T = 2π

√
8m`2

9mg`

T =
2π

3

√
8`

g

That solves this problem!

(40) It is quite remarkable that ω1 and ω2 are independent of µ, and it is also independent of
the time it takes for the equilibrium to be reached (i.e independent of how hard one pushes the
disks against each other).”

Unlike most cases, I’m writing almost all the text for this problem after having solved it. (I
usually write while solving, then clean up the text when I have everything correct, and feel I
understand the solution fully.)
This problem was certainly the most confusing of the week for many, including myself until I
thought about it for quite a long while, while following the forum discussions.

First: angular momentum will not be conserved! This is an extremely important point, of
course – solving this by assuming it is conserved does not work. (Except a side note, below.)

It is clear that there is friction between the disks, or they could not affect one another. Friction
is proportional to the normal force, but since the disks are at the side of one another, there is no
natural force to push them together.
This force must be provided by something external to the system, such as a person holding the
two axles.
In addition, the force due to friction acts “upwards” and “downwards” on the two disks,
respectively (in the order shown in the figure). With a net force upwards or downwards on an

object, the center of mass must accelerate upwards! acm =
Fext
m

must hold for the center of

mass. Therefore, in order for the disks to stay where they are, another external force comes
in: the leftwards disk must be forced down, and the rightwards disk must be forced up, or they
will not stay put.

Now, in a bit of a freak coincidence, the correct solution can be found by assuming angular

momentum is conserved, and by assuming that
m1

m2
=
R1

R2
, which is incorrect! Since mass is

proportional to volume, and volume is πR2
i h, the correct equation is

m1

m2
=
R2

1

R2
2

.

Combining this correct equation with conservation of momentum, and you can find an answer
which looks like the correct ones, only that all exponents (on R1 and R2) are one too large! If
you then also use the incorrect formula for the masses above, the error cancels out, and you
find the correct answer!
To be clear, this does not imply that the method is correct – it is trivial to show that the total
angular momentum must change! See the end notes below, after my solution.

My solution

Okay, so let’s consider this in more detail. To begin with, note that below, any time I say the
leftmost disk, I mean the leftmost disk in the figure above, which is disk 2 (since it has radius R2

and ends up spinning at ω2, I call it disk 2). The rightmost disk is disk 1.
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Okay. First, we can write two equations regarding the change in angular momentum of each
disk on its own. By the way, because we also deal with objects spinning about an axis through
their center of mass, we don’t need to specify the point relative to which we find the angular
momentum, as the answer is the same for all such points.
The two equations relating these changes are

∆L1 = I1(ω1 − ω)

∆L2 = I2(ω2 − 0)

Disk 2 starts with 0 initial angular momentum, so its final angular momentum I2ω2 equals the
change.

The most important forces involved will be the frictional forces due to the contact of the two
disks. The magnitude of these forces is unknown (they depend on how hard the disks are pushed
together, which we are not told), but that doesn’t matter for the solution, as the problem sort-of
states.

Disk 1 spins clockwise to begin with. When it comes in contact with disk 2, there is a frictional
force on disk 1, due to disk 2. This frictional force must oppose the relative motion, and so
it acts downwards (counterclockwise) on disk 1, slowing its rotation. (Anything else would be
crazy!)
Via Newton’s third law, there is an equal but opposite force on disk 2 (which is still stationary),
due to disk 1. This means that force is upwards, i.e. causes counterclockwise rotation.

These forces must cause torque on the two disks, or their rotation would be unaffected (since
torque causes change in rotational motion, just as force causes change in linear motion).
For disk 1, there is friction on the left side, acting downwards tangentially along the disk. The
torque caused by this, relative to the disk’s center, is the cross product of the position vector from
the center and the friction vector:

τ1 = R1 × Ffr = −R1Ffr

As for direction, via the right-hand rule, it is out of the screen, i.e. acts counterclockwise. Again,
anything else would be crazy, since the opposite torque would speed the disk’s rotation up.
I notate this with a minus sign, as I use clockwise rotation (into the screen) as positive. That is
the initial rotation, so I figured it would make sense to call that positive.

For disk 2, we do the same process. Friction is on the right side, acting upwards, tangentially.
The torque relative to this disk’s center is

τ2 = R2 × Ffr = −R2Ffr

The direction of this torque is also out of the screen, i.e. it acts counterclockwise. This is also
clear if you consider the direction of the motion; the disk starts to spin such that the tangential
velocity is reduced, so that slipping is reduced. This is only possible if it spins up counterclockwise.

Note that both torques act counterclockwise, which means angular momentum is increasing in the
CCW direction for both disks, and therefore for the system of the two disks combined. This can
clearly not be the case if angular momentum is conserved/held constant; if it were held constant,
the increase in one disk must be matched by a decrease in the other.
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I used Ffr for both frictional forces, since they have the same magnitude via Newton’s third law.
Their directions do differ, however.

Say that this frictional force acts for an unknown time ∆t. We can then also write the changes
in angular momenta as

∆L1 = −Ffr∆tR1

∆L2 = −Ffr∆tR2

using the relationship
dL

dt
= τ , which becomes ∆L = τ∆t if we bring it out of the differential

form, and rearrange.

So, we have four equations; two per disk, both of which define the change in angular momentum.
If we set them equal in pairs, we get two equations, with many unknowns (Ffr, ∆t, I1, I2, ω1

and ω2 – wow).
Not to worry, as we can eliminate many of those. First, we can eliminate I2 by writing it in
terms of I1. It is specified that the disks have the same density and thickness, so we can relate
their masses and/or moments of inertia by comparing the radii.

The mass of a disk with some density ρ is πR2
i hρ. The moment of inertia is then 1

2mR
2
i =

1
2(πR2

i hρ)R2
i , and the ratio of the two moments of inertia becomes

I2

I1
=

1
2(πR2

2hρ)R2
2

1
2(πR2

1hρ)R2
1

=
R4

2

R4
1

which gives us I2 = I1
R4

2

R4
1

. It is proportional to R4 because both the mass and the moment of

inertia are, on their own, proportional to R2.

Combining the two pairs of ∆L equations, and making the substitution for I2 using the relationship
above, we have

I1ω1 − I1ω = −Ffr∆tR1

I1
R4

2

R4
1

ω2 = −Ffr∆tR2

We can divide the two equations – note how this gets rid of Ffr, ∆t and I1 all at once!

I1ω1 − I1ω

I1
R4

2

R4
1
ω2

=
−Ffr∆tR1

−Ffr∆tR2

R4
1

ω1 − ω
R4

2ω2
=
R1

R2

R3
1

ω1 − ω
R3

2ω2
= 1

R3
1ω1 −R3

1ω = R3
2ω2

R3
1ω1 −R3

2ω2 = R3
1ω
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A bit of a prettier way to write this would be to consider the relative magnitudes of the two
torques instead (the torques are not the same in magnitude, but the frictional force that causes
them are). The end result is the same; it is simply a different way to write the equations.

Another relationship we can use is that of the linear velocities of the two disks, which need to
match for there to be no slipping.

ω1R1 = −ω2R2

We then have two equations and two unknowns:

R3
1ω1 −R3

2ω2 = R3
1ω

ω1R1 = −ω2R2

The solutions are

ω1 =
R2

1ω

R2
1 +R2

2

ω2 = − R3
1ω

R2(R2
1 +R2

2)

They asked for the magnitudes, though, so we need to drop the minus sign in front of ω2.

Aftermath

So with the solutions in mind, what happens in terms of angular momentum?

Linitial = I1ω

Lfinal = I1ω1 + I2ω2

... keeping in mind that ω2 is negative. We know that ω > ω1, and that the moments of inertia
don’t change. The change in angular momentum is

∆Lsys = Lfinal − Linitial = (I1ω1 + I2ω2)− I1ω

Which is, using the expressions for the solutions ω1 and ω2, and using I2 = I1
R4

2

R4
1

:

∆Lsys = −I1R
2
2(R1 +R2)

R1(R2
1 +R2

2)
ω

Not a very pretty expression (I think simplification might have made it uglier), but we can
consider the simpler case when R2 = R1:
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∆Lsys,R1=R2 = −I1ω

In this special case, the change in angular momentum is exactly the negative of the initial
angular momentum: the net angular momentum is ZERO afterwards.
This does actually make a whole lot of sense. If the disks are identical (same thickness, radii and
density implies same mass and same moment of inertia), they will rotate at the same angular
speed... but opposite directions! Since LC = Icω, and both disks have the same magnitude
(but opposite direction) of ω, and the same Ic, the angular momentum of disk 1 is exactly the
opposite of disk 1, and the sum is zero.

The solution for angular velocities in this special case is ω1 = ω/2 and ω2 = −ω/2, so.

Lfinal,R1=R2 = I
ω

2
+ I

(
−ω

2

)
= 0

(41) The motion of the center of mass is very easy to derive. Say the rod is hit by an impulse I.
It has zero momentum to begin with, so its new total momentum is I.
ptot = mtotvcm must hold, and so

vcm =
I

m
= 4/3 m/s

In the absence of external forces, this is held constant.
Part (c) is also extremely simple, then:

D = vcmt = (4/3 m/s)(8 s) = 32/3 m

The rotational motion is bit more tricky.
We can choose to consider torques relative to the center of mass, or relative to a point along the
line of the impulse. (We can choose differently, but why would we?)
I’m not sure which is easier in the end, but I find it easier to visualize it relative to the center of
mass, point C.

The torque is then τC = Fd, where F is the magnitude of the force, and d the distance between
C and X. It we multiply both sides by the (unknown) impact time, we get τC∆t = (F∆t)d,
which is the same as saying LC = Id. The initial angular momentum relative to point C is zero,
so this is the total angular momentum after the hit.

The angular momentum relative to point C is about the center of mass; so LC = Icω also holds
(where Ic is the moment of inertia of the rod around the center). Setting the two equal,

Icω = Id

ω =
Id

Ic
=

Id
1
12m`

2

For the numbers given, ω = 9.6 rad/s.
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After 8 seconds, it has rotated 76.8 radians, which about 12.22 rotations; the angle should be a
bit less than 90 degrees (0.22 radians), in other words.
To find the angle,

θ = 76.8 mod (2π) = 1.402 rad = 80.32◦

where mod gives the remainder after a division. The result is the same as 76.8− (2π × b76.8
2π c).

Finally, the total kinetic energy. This is simply the sum of the translational (linear) kinetic
energy, and the rotational:

K =
1

2
mv2

cm +
1

2
Icω

2 = 2.6667 J + 2.88 J = 5.5467 J

(42) (a) What is the speed v0 (in m/s) of the earth in its orbit of radius R = 1.5× 1011 m
around the sun with a mass M = 1.99× 1030 kg? Take the gravitational constant G =
6.674× 10−11 m3kg−1s−2.

First, if we treat the orbit as circular (as they clearly want us to: it is “near circular”, and they
ask for the orbital speed; elliptical orbits don’t have a single speed, but one that varies over
time.

I tend to not always remember the equation here, but I do always remember that the total

mechanical energy is Ke + U =
1

2
U . We can rearrange that prior to substitution of the actual

values, and then solve for v0:

Ke + U =
1

2
U

Ke = −1

2
U

1

2
mv2

0 =
mMG

2R

v0 =

√
MG

R
≈ 29 756 m/s

“We want the spacecraft to fall into the sun. One way to do this is to fire the rocket in a direction
opposite to the earth’s orbital motion to reduce the spacecraft’s speed to zero (relative to the
sun).

(b) What is the total impulse I0 that would have to be given by the rocket to the spacecraft to
accomplish this? You may ignore the effect of the earth’s gravitation as well as the orbital speed
of the spacecraft around the earth as the latter is much smaller than the speed of the earth
around the sun. Thus, you may assume that the spacecraft, before the rocket is fired, has the
same speed in its orbit around the sun as the earth. Express your answer in terms of m and v0.”

Given that we can neglect almost everything, this is very easy. We have an initial momentum
mv0 (if we indeed neglect the orbital speed around the Earth), and we need to get that speed
down to zero, which implies getting our momentum to zero. The change is simply −mv0.
The answer that is accepted is mv0, however. A bit strange, to me – they don’t ask for any
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magnitudes, and since mv0 is clearly the current momentum, I would argue that an impulse of
I = mv0 would double the current momentum (and thus speed) in the direction the spacecraft
is currently moving.
Ah well.

“We will now show that there is a more economical way of doing this (i.e., a much smaller rocket
can do the job). By means of a brief rocket burn the spacecraft is first put into an elliptical
orbit around the sun; the boost is provided tangentially to the earth’s circular orbit around the
sun (see figure). The aphelion of the new orbit is at a distance r from the sun. At aphelion the
spacecraft is given a backward impulse to reduce its speed to zero (relative to the sun) so that it
will subsequently fall into the sun.

(c) Calculate the impulse I1 required at the first rocket burn (the boost). Express your answer
in terms of I0, R and r.”

Okay, so aphelion is the furthest it ever comes from the Sun (perihelion is the closest). If we call
aphelion point A, perihelion point P and the Sun point Q, then we have AQ + PQ = 2a, where
a is the orbit’s semi-major axis.
If the distance AQ is r, and the current distance PQ from us to the Sun is R, then via the
diagram provided, clearly 2a = R+ r, where a is the semi-major axis of the new, elliptical orbit.

Combined with the next question, we need to find the impulse required to move into an elliptical

orbit with new speed v1, such that a =
R+ r

2
.

We make a burn so that the new speed is v1, and the new (linear) momentum mv1. The impulse
is then m(v1 − v0), but we don’t know v1 yet.
We can figure out v1 by conservation of energy. After the burn, energy is conserved (but not
during, of course). The new kinetic energy, plus the new (same as before) potential energy must
equal half of the potential energy of the new, elliptical orbit:

1

2
mv2

1 −
mMG

R
= −mMG

2a
v2

1 =
2MG

R
− MG

a

v2
1 = 2MG

(
1

R
− 1

2a

)
v1 =

√
2MG

(
1

R
− 1

R+ r

)
=

√
2GMr

R(R+ r)

Now, here’s the slightly tricky part... We know that v0 =

√
MG

R
, and we need to write the

above in terms of v0. Thankfully, with the simplification done, that is in fact now the opposite
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of tricky. It could have been! We simply remove those variables from inside the square root, and
tack on v0 outside:

v1 = v0

√
2r

(R+ r)

Next, we need to write this in terms of impulse. I0 = v0/m, and I1 = m(v1 − v0).

I1 = mv0

√
2r

(R+ r)
−mv0 = I0

(√
2r

(R+ r)
− 1

)

“(d) What is the speed v2 of the spacecraft at aphelion? Express your answer in terms of v0, R
and r.”

Finally, we need to convert v1 into v2. v1 at perihelion, and v2 is at aphelion. The speed at
perihelion is much greater than that at aphelion.
Angular momentum is the same at both locations. Therefore, Rmv1 = rmv2, or Rv1 = rv2 ⇒
v2 = R

r v1.

v2 =
R

r
v0

√
2r

R+ r

“(e) Calculate the impulse I2 required at the second rocket burn (at aphelion). Express your
answer in terms of I0, R and r.”

This shouldn’t be too bad now. We need to bring v2 down to zero, so

I2 = mv2 = mv0
R

r

√
2r

R+ r
= I0

R

r

√
2r

R+ r

Again, they want a positive value.

“(f) Compare the impulse under b) with the sum of the impulses under c) and e) (i.e find
I0− (I1 + I2)), and convince yourself that the latter procedure is more economical. Express your
answer in terms of I0, R and r.”

I will call this ∆I for a lack of a better name.

∆I = I0 −

(
I0

(√
2r

(R+ r)
− 1

)
+ I0

R

r

√
2r

R+ r

)

∆I = I0 − I0

(√
2r

(R+ r)
− 1 +

R

r

√
2r

R+ r

)

To convince ourselves, we need to find that the expression in parenthesis is always such that
∆I > 0 (otherwise, it’s equally or even less efficient).
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∆I = I0 − I0

(√
2r

(R+ r)

(
1 +

R

r

)
− 1

)

∆I = 2I0 − I0

(√
2r

(R+ r)

(
1 +

R

r

))

∆I = I0

(
2−
√

2

√
R+ r

r

)

Finally, we can truly convince ourselves by solving this for r manually:

2−
√

2

√
R+ r

r
> 0

√
2

√
R+ r

r
< 2

2
R+ r

r
< 4

2R < 2r

R < r

So indeed, for any chosen r > R, this is more efficient. Of course, we need to remain in orbit
for the result to be useful; we could of course make a ridiculous burn to reach an extremely high
speed and escape, which would be less efficient, but in that case, we would have any r as we
would not be in an elliptical orbit.

Phew! This took a very long time for me – a while to figure out how to solve part (c), and
a very long time to figure out where I was going wrong. I got v0 correct at once, but then

accidentally wrote down an incorrect expression in my notes: v0 =

√
2MG

R
. You may notice

that is the escape velocity for Earth’s orbit, not v0 – I did too, only the day after I started
working on this problem. Once I noticed, everything else went rather smoothly.

(43) Well, part (a) is easy, at least. We even saw that expression, exactly as-is, during the lecture
(indeed, in the part about Cygnus X-1, i.e. this system).
We use the equation for periods of elliptical orbits, sometimes known as Kepler’s third law
(though Kepler only said T 2 ∝ a3; the rest was calculated later), only we substitute in m1 +m2

for the mass, and r1 + r2 for the orbital radius:

T =

√
4π2(r1 + r2)3

G(m1 +m2)

For part (b), they tell us the period T , and the velocity v2. Finding r2 is a piece of cake, then, if
we don’t get wrapped up in complex thinking!

2πr2

T
= v2
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r2 =
v2T

2π
=

(148× 103 m/s)(5.6 days)

2π
≈ 1.1397× 1010 m

We now know T and r2, but not m1, m2 or r1. For finding r1, they gave us a hint, though:

“Hint: Your calculations will be greatly simplified if instead of r1 you set up your equations in
terms of r1/r2, and using some relation between the distances and the masses. Once you express
your equation in terms of r1/r2, you will find a third order equation in r1/r2. Only one solution
is real; the other two are imaginary. There are various ways to find an approximation for r1/r2.
You can find the solution by trial and error using your calculator, or you can plot the function.”

Hmm. Well, via the center of mass definition,

m1r1 = m2r2

We can certainly find r1/r2 from that:

r1

r2
=
m2

m1

They also tell us that m2 = 30MSun.

r1 =
30MSun

m1
r2

Here is where we need to start applying the hint given. I will copy the staff solution a bit here
(i.e. I’m writing this part after the deadline has passed to clean up). We can assign a variable
x = r1/r2.
This then implies that m1 = m2/x using the above relationships.

We can now start rewriting the period equation. First, we square it to get rid of the square root
on the right-hand side. Then, we factor out r3

2 and m2, respectively, out of the parenthesis, to
get the insides in fraction form:

T 2 =
4π2r3

2( r1r2 + 1)3

Gm2(m1
m2

+ 1)

Next, we write this in terms of x:

T 2 =
4π2r3

2(x+ 1)3

Gm2( 1
x + 1)

Finally, we isolate x on the right hand side:

Gm2T
2

4π2r3
2

=
(x+ 1)3

1
x + 1

216



We can now approximate this function. We know everything on the left-hand side: m2 =
30MSun = 30× 2× 1030 kg, T = 5.6 days times 86400 seconds and r2 = 1.1397× 1010 m.
The left-hand side is approximately equal to 16.04.

We can then plot the two functions

y = 16.04

y =
(x+ 1)3

1
x + 1

and see where they intersect. That happens at approximately x = 1.9031.

With that value in hand, we can now find r1 = xr2 = 2.169× 1010 m and m1 = m2/x = 15.764
solar masses.

(44)

Let’s see. First, we can write an equation for the acceleration of the center of mass, in terms of
string tension acting upwards, and gravity acting downwards. We choose downwards to be the
positive direction, and find

ma = mg − T

Next, we can consider the torque. I will do so considering the center of the yo-yo, call it point C:

τC = ICα

The torque is due to the tension acting on the inner spool of radius b, and is τC = Tb.
We can also use the relationship a = αR, which holds if there is no slipping. With these two
things in mind, we can rewrite the above equation as

Tb = IC
a

b

We can solve for the tension by solving these for A and setting them equal.

a = g − T

m

a =
Tb2

IC
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g − T

m
=
Tb2

IC

g = T

(
b2

IC
+

1

m

)
g

b2

IC
+ 1

m

= T

We are given that IC = 1
2mR

2, so we can stick that in there and simplify to find the tension in
terms of the variables they want:

g
b2

(1/2)mR2 + 1
m

= T

mg

2 b2

R2 + 1
= T

mgR2

2b2 +R2
= T

Next, they want the angular speed when the Yo-Yo reaches the bottom.
Now, we have a situation equivalent to pure roll, which means that the tangential velocity is
always equal to the velocity of the center of mass.
We can therefore solve this more easily (I believe it’s easier, anyway) by using a, using that
to find the velocity of the center of mass, which then is equal to the tangential velocity, and
converting that to angular speed.

We have an expression for the acceleration as a function of T , and we know T , so

a = g

(
1− R2

2b2 +R2

)
Since the acceleration is clearly constant in time, the velocity as a function of acceleration is
just v = at, but we don’t know t.
We can use a second constant acceleration kinematics equation, though: ` = 1

2at
2. We solve

that one for t:

` =
1

2
at2√

2`

a
= t

Combining the two,

vf = a

√
2`

a
=
√

2`a =
√

2`

√
g

(
1− R2

2b2 +R2

)

Finally, to convert to angular speed, we simply use vf = ωb, so ω =
vf
b :
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ω =

√
2`

b

√
g

(
1− R2

2b2 +R2

)
This can be simplified quite a bit further (I used Mathematica for this one):

ω = 2

√
g`

2b2 +R2

We should be able to solve the last part in terms of impulse. If the speed vf going back up is
the same as the speed down, as the diagram shows, the impulse is 2mvf .
The average force acting on the yo-yo is found via

I = 〈F 〉∆t

However, the average force and the average tension are not the same thing. Regardless of the
tension, there is clearly a constant downwards force mg acting on the yo-yo, due to gravity.
Let’s take care of that last.

2mvf
∆t

= 〈F 〉

Of course, this causes a new problem: what is ∆t? We know the speed vf just prior to and just
after, but what about during this turnaround?
Because the angular velocity is about the same for the entire turnaround (it doesn’t switch
directions), vf is also approximately constant, since the two are linearly proportional.

In that case, ∆t = d/vf , where d is the distance traveled during this time. So what is that,
then? I would think it is half the circumference of the inner spool, which is πb. We can then
find the time as the distance divided by the tangential velocity, ∆t = (πb)/vf , so using that,
plus our expression of the velocity vf as the string is unwrapped:

2mv2
f

πb
= 〈F 〉

2m

πb
2`g

(
1− R2

2b2 +R2

)
= 〈F 〉

(Side note added afterwards: we can just as easily, probably more easily, consider that it moves
π radians about the inner spool, and use ω at the turnaround point to calculate the time taken.)

Let’s now not forget that 〈F 〉 is the average net force on the object. Gravity is pulling it
down, which the tension is trying to counteract. Therefore, we add mg, braFgravity〉 (which is
thankfully a constant) to the above to find the average tension:

mg +
2m

πb
2`g

(
1− R2

2b2 +R2

)
= 〈Tr〉

mg +
4m`g

πb

(
1− R2

2b2 +R2

)
= 〈Tr〉
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Again, this can be simplified quite a bit, and again, I used Mathematica for that part:

〈Tr〉 = mg

(
8b`

2πb2 + πR2
+ 1

)
+m

(45) All right, time to look at some forces, to begin with!

Block 2 has four forces acting on it: mg downwards, N = mg upwards (since there is no
acceleration along the y axis, they must cancel), a tension T2 towards the right, and friction
Ff = µkm2g towards the left.
Block 1 has only two: mg downwards, and T1 upwards.

Newton’s second law for the two gives us, taking downwards (block 1) = rightwards (block 2) as
positive:

m2a = T2 − µkm2g

m1a = m1g − T1

Next, we can consider the torque and angular acceleration of the pulley. Relative to the center
C of the pulley, the torque is Icα. As usual, we use a = αR to rewrite this in terms of the linear
acceleration a, and assume there is no slipping or such going on.

τC = Ic
a

R

So what is the torque? Well, we can write it as the torque due to T1 (which causes clockwise
rotation) minus the torque due to T2. Both act at 90 degree angles with the center, so

R(T1 − T2) = Ic
a

R

We now have three equations and three unknowns: a, T1 and T2. If we solve the tension equations
for T2 and T1 respectively, we can find T1 − T2 easily, and therefore a.
First, I will solve the above equation for a:

a =
R2

Ic
(T1 − T2)

Solving the two is also easy:

m2a+ µkm2g = T2

m1g −m1a = T1

All that remains is to combine the three as mentioned, and solve for a:
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a =
R2

Ic
(m1g −m1a−m2a− µkm2g)

a =
R2

Ic
(m1g − µkm2g)− R2

Ic
m1a−

R2

Ic
m2a

a

(
1 +

R2m1

Ic
+
R2m2

Ic

)
=
R2

Ic
(m1g − µkm2g)

a =
R2

Ic
(m1g − µkm2g)

1 + R2m1
Ic

+ R2m2
Ic

a =
gR2(m1 − µkm2)

Ic +R2(m1 +m2)

Well then! Let’s see about part (b).
Is the acceleration constant? Yes, it is; nothing in there should change over time. Therefore, we
can answer this one using some very basic kinematics:

d =
1

2
at21 =

1

2

gR2(m1 − µkm2)

Ic +R2(m1 +m2)
t21

(46) They then ask for a, T1 (tension at m1) and T2 (tension at m2).
This certainly looks like the slightly more complex brother of the previous problem!

To begin with, we can’t know which of the masses will “win”, if any. If static friction wins,
then a = 0, which is the trivial solution and one that I will not even attempt to submit. What
happens otherwise? Well, getting the sign correct is guesswork, as far as I can tell; according to
forum discussions, this seems to be the consensus. I will call downwards (for m1) and uphill (for
m2) positive in this solution.

Well then! We yet again have a bunch of forces. The forces on the hanging mass are unchanged,
so we get the same equation there:

m1a = m1g − T1

Block 2 changes the game a little. We have the same four forces, but we now need to decompose the
gravitational force into the normal force component and the “downhill” component. Performing
the decomposition, we find the normal force as m2g cos θ, which the downhill force is m2g sin θ.
The incline is frictionless, so gravity is the only downhill force. There is a tension T2 uphill,
however, All in all, the normal force cancels out the component of gravity perpendicular to the
incline, while T2 uphill and m2g sin θ battles where the block should move.
Using the directions I chose,

m2a = T2 −m2g sin θ

Two equations, three unknowns. We need to consider the pulley next, as usual in these problems.
As in the previous problem, the tensions cause a torque, and both are perpendicular to the
center of the wheel. The torque relative to the pulley’s center is τC = R(T1 − T2), which again
is equal to Icmα = Icm

a
R . We were given Icm in terms of mass and radius:
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R(T1 − T2) =
1

2
mpRa

2(T1 − T2)

mp
= a

I will again find T1 − T2 by solving those two equations individually and subtracting them:

m1g −m1a = T1

m2a+m2g sin θ = T2

T1 − T2 = m1g −m1a−m2a−m2g sin θ

Substitute that in to the torque equation:

a =
2

mp
(m1g −m1a−m2a−m2g sin θ)

a =
2

mp
(m1g −m2g sin θ)− 2m1

mp
a− 2m2

mp
a

a

(
1 +

2m1

mp
+

2m2

mp

)
=

2

mp
(m1g −m2g sin θ)

a =

2
mp

(m1g −m2g sin θ)

1 + 2m1
mp

+ 2m2
mp

a =
2g (m1 −m2 sin θ)

mp + 2m1 + 2m2

We can then find the tensions easily, since we solved for them earlier. Whether it will be pretty
is a different matter!

T1 = m1

(
g − 2g (m1 −m2 sin θ)

mp + 2m1 + 2m2

)

T2 = m2

(
g sin θ +

2g (m1 −m2 sin θ)

mp + 2m1 + 2m2

)
(47) Okay, so let’s see. First, what happens with zero friction? Clearly, there is no rolling at all,
since there will be no torque on the cylinder.
For there to be pure roll, a condition that must be fulfilled is that the tangential speed ωR is
the same as the velocity at the center of mass. Since the angular acceleration is α = a/R, we
must have αR = a for pure roll to hold.
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Let’s start out with part (a) and see where that leads.
If there is is no slipping, then there is no kinetic friction. There is, however, static friction.
Without that, the cylinder would slide down without turning at all.

If we choose a coordinate system where y is perpendicular to the incline, while x is downhill,
we can write the the normal component of gravity as Mg cos θ, while the downhill component
is Mg sin θ. Static friction acts upwards: the friction must be such that the torque causes
clockwise rotation (or it would roll the wrong way!). This implies an uphill frictional force,
µsN = µsMg cos θ. (Another way to think of it is that the cylinder wants to slide downhill.
Therefore, static friction acts uphill, since friction always opposes relative motion between
surfaces.)

Ma = Mg sin θ − µsMg cos θ

a = g(sin θ − µs cos θ)

This would seem to answer part (a), but we’re not allowed to use µs in the answer, so we need
to keep working.

As mentioned earlier, in this analysis, the cylinder rolls due to the torque caused by friction.
Friction acts uphill, and the magnitude of the torque, relative to the center of the cylinder, is
RFf = RMgµs cos θ.

A useful relation is then that τ = Icmα = Icm
a

R
(the latter part holds for pure roll only), and

we are given that Icm = MR2, so

RMgµs cos θ = aMR

M and R both cancel.
We can solve this for µs:

gµs cos θ = a

µs =
a

g cos θ

This gives us the acceleration, now that we can write µs in terms of g and cos θ:

a = g(sin θ − a

g cos θ
cos θ)

a = g sin θ − a

a =
g sin θ

2

Next, we substitute this back into µs to get it in terms of θ:

µs =
g sin θ

2

g cos θ

µs =
tan θ

2
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Very nice and simple! This is the minimum amount of friction required for pure roll. More
friction wouldn’t hurt; as the acceleration equation shows, more friction doesn’t cause less
acceleration, but it does prevent sliding.

Finally, what is the velocity of the center of mass as it reaches the bottom? Well, we know the
acceleration. We could use the work-energy theorem, but there will be both linear kinetic energy
and rotational kinetic energy, so that seems like it would be harder. Then again, we don’t know
the time which we need for kinematics, so I will go the energy route anyway.
The final velocity v causes an angular velocity v = ω/R with no sliding. The total kinetic energy
can be written down as being equal to Mgh, which is the total energy available to be converted:

Klin +Krot = Mgh

1

2
Mv2 +

1

2
Icmω

2 = Mgh

1

2
Mv2 +

1

2
(MR2)

( v
R

)2
= Mgh

1

2
Mv2 +

1

2
Mv2 = Mgh

v2 = gh

v =
√
gh

Nice! The intermediate results were semi-complex at times, but the answers are all dead simple.

There are several interesting things in this result, at least two of which I didn’t realize until a
few days after solving this. One is that the rotational kinetic energy in this case is exactly equal
to the linear kinetic energy – the expression on the right in equation 4 above simplifies to 1

2Mv2!

Without this term, the velocity would be
√

2gh instead, i.e. exactly a factor
√

2 greater, regardless
of much of anything else.
(I rewrote that equation after realizing this; I previously had it in a form which made this hard
to see.)

Second, I chose to analyze this relative to the center, which means that static friction provides a
torque. How can there be an increase in rotational kinetic energy without a torque that does
positive work? As far as I know, there certainly cannot. Therefore, according to this analysis,
static friction provides this positive work!
However, it still does no net work, which is the amazing thing: it is a linear force uphill, which
therefore fights with Mg sin θ about the linear acceleration. It therefore acts to reduce the final
linear velocity by a factor 1/

√
2, and the final kinetic energy by a factor 1/2; this is instead

turned into rotational kinetic energy here.

So while static friction appears to does positive work increasing the rotational kinetic energy, it
appears to do an equal amount of negative work in the linear motion, for a net of zero work – as
it must be.

If we instead analyze this problem relative to the point of contact, friction can provide no
torque (as it acts through that point), and we will instead find gravity providing the torque and
therefore doing the work that gets the cylinder rolling. For other points, where both forces can
cause a torque relative to the center, we should find some combination of the two effects, but
with the same end result.

(48) I wonder how realistic the answers will be – a piece of debris with negligible speed (relative
to the Earth) wouldn’t stay in place for very long!
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The satellite begins with linear momentum mv0. After the hit, the mass doubles, and so
velocity is cut in half. Call this post-hit velocity va (a for apogee); using conservation of (linear)

momentum, we then have mv0 + 0 = 2mva, so indeed va =
v0

2
.

We could also find this relationship using conservation of angular momentum relative to the
center of the Earth, by the way.

Given this “initial” velocity va and the initial distance to the Earth, we could find the orbital
parameters for the new elliptical orbit, but I don’t believe we will need all of them. Clearly, the
apogee distance ra is simply the initial radius of the circular orbit, which is even given in the
problem, only they don’t mention it explicitly, but use the same variable for the two (and draw
the graphic showing the two are equal).

Now, then. How can we calculate v0? Well, we know the orbital radius, and for a circular
orbit, each orbital radius has unique velocity. This velocity can be derived by remembering that
the total mechanical energy is always 1

2U , but I’m confident that I remember the quite simple
velocity equation, so:

v0 =

√
MG

ra

ra + rp = 2a, where a is the elliptical orbit’s semi-major axis. Via an energy calculation, we can
relate the new velocity va plus the current potential energy with the total mechanical energy for
an elliptical orbit, which depends on 2a, so we can find a.

1

2
(2m)v2

a −
2mMG

ra
= −2mMG

2a

v2
a −

2MG

ra
= −2MG

2a
1

v2
a − 2MG

ra

= − a

MG

MG
2MG
ra
− v2

a

= a

raMG

2MG− rav2
a

= a

Since we know that ra + rp = 2a, the above must be equal to
ra+rp

2 . We can also substitute in

the value for va = v0/2 = 1
2

√
MG
ra

:

raMG

2MG− raMG
4ra

=
ra + rp

2

4raMG

8MG−MG
=
ra + rp

2
8ra
7
− ra = rp

ra
7

= rp
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Well, that sure became simple. The ratio is then ra/rp = 7 – showing that the apogee is at a
(much) greater than distance than the perigee, as one would expect.

And that’s it for this problem!

(49) Time for a short break to read the textbook! I’m unsure whether we can use Ω =
τ

Icω
here

(after vector decomposition), or not.
They indeed seem to consider that we can ignore any angular momentum due to the orbital
motion, and therefore, this approximation should be valid. Very well, then.
My solution will be less rigorous than the quite technical discussion in the textbook; if you want
more detail, I recommend having a look there. Actually, I would recommend that either way!

The torque relative to what I will call point P, the pivot point where the axle meets the stand,
is τP = d× Fgr = (d× g)M . Unlike what we have seen previously, the angle is not 90 degrees.
Gravity is always straight downwards, of course, but as the angle the axle makes with the
horizontal grows (downwards), the torque goes down. It is at a maximum with θ = 0, and
zero when the axle is pointing straight down (which makes sense: the two vectors are then
anti-parallel, so the cross product must be zero). The equation then becomes

τp = d× Fg = dMg cos θ

(where θ is the angle that is marked as 30 degrees).

Why a cosine, in a cross product? Because the angle between the two vectors is not equal to
the 30◦ degrees shown, but instead is 90◦ − 30◦ degrees. It makes intuitive sense that when the
angle shown is zero, the torque is at a maximum, and when the axle is vertical, there is zero
torque.
We could write the cross product as dMG sinα, where α is the angle between the vectors,
followed by α+ θ = 90◦. This then makes it clear that we need sinα = sin(90◦ − θ) = cos θ. I
will write it in terms of the cosine of θ, since that gives us a simple expression in terms of the
given variables (θ = 30◦).

The spin angular momentum due to the disk spinning about its center of mass can be written as

Icω, where Ic =
1

2
MR2 for a solid disk.

The direction of this is “inwards” along the axle, no matter the axle’s angle; so radially inwards
and partially upwards, in this case.

We now know torque and the spin angular momentum. The spin angular momentum needs to
be decomposed, though, as only the radial portion matters for the precession.
Consider the time when the system has rotated such that the view from the angle the figure is
shown is now such that the axle is in the plane of the page, and we see the disk head-on, on the
right side of the pivot point.
The torque is then pointed into the page, while spin angular momentum points left/upwards, at
an angle with the horizontal due to the non-horizontal axle.

Left/upwards in more mathematical terms would mean −r̂ (left) and +k̂ (upwards), using
cylindrical coordinates, where +θ̂ is into the page.

As the disk/gyroscope precesses, only the direction of the radial component changes, with the
center of mass of the disk tracing out a circle in a horizontal plane. The angle, and therefore the
upwards/z component does not change as long as ω (the disk’s spin angular velocity) is held
constant. Neither does the magnitude of the spin angular momentum change; the only change
in its direction, as mentioned.
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The time derivative of r̂ is given as
dθ

dt
θ̂ = Ωθ̂, i.e. into the page. However, if we treat this more

rigorously, we will find that Ω is negative, and so the system will move “towards us” as seen
here (clockwise as seen from above).

For a more rigorous treatment, see chapter 22 in the textbook (the end of page 22-14 and
onwards).

All in all, we have

|Ω| = |τ |
|Lspin|

=
dMg cos θ

0.5MR2ω cos θ

=
2dg

R2ω

For these values, Ω = 1
3 rad/s (using g = 10 m/s2, which it appears we are supposed to), which

is accepted as correct!
I was a bit worried when the cosines cancelled out, as I expected the angle to matter. Apparently,
the effect is indeed cancelled out, as both the torque component and the spin angular momentum
component that matter are smaller (by the same factor).

(50) Having read the section in the book (chapter 22) on exactly this problem, I feel like I’m
cheating here! I will do what I can to derive everything I use, in order to ensure I understand it
all, at least.

All right. The first part is rather easy, at least: the center of mass of the wheel must move with
speed vcm = ωb if there is no slip (this is a condition of pure roll). Meanwhile, the entire wheel
is also rotating about the center axis with angular speed Ω, which can be used to find vcm = ΩR
separately from the previous relationship.
We can then simply set the two equal and solve for ω, since Ω is allowed in the answer:

ωb = ΩR

ω =
ΩR

b

Next, the horizontal component of the angular momentum relative to point P. Given the hint in
the problem, this is very easy. The angular momentum about the axle’s axis due to the rotation
(about the wheel’s center of mass) is just Icω, where we use Ic = 1

2Mb2 for a solid disk of radius
b (not R in this problem!):

LP = Icω = (
1

2
Mb2)

(
ΩR

b

)
=

ΩRMb

2

Part (c) is regarding the magnitude of the torque about the center axle (point P is not in the
figure, but it is in the book; it is where the axle connects to the vertical bar, at the hinge).

Well, what forces could cause a torque? Gravity acting on the wheel certainly counts; the torque
at P (see above) due to gravity acting on the wheel is τP,gravity = (R× g)M = RMg (there is a
90 degree angle, so sin θ = 1), with the direction being into the page (causing rotation as shown
for Ω).
Next, there is the normal force N = 2Mg causing a torque R×N = RN = 2RMg, with the
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direction being out of the page, opposing the previous torque.
If the axle is taken to be massless, there are no other forces that act such that they cause a
torque relative to point P.

The net torque, or at least the magnitude of it, is just the torque due to the normal force minus
the torque due to gravity:

|τP,net| = RN −RMg

We could write this in terms of 2Mg instead of N , but the grader really wants it in terms of
N , according to the forum discussions. I submitted the above as the first attempt, and it was
indeed accepted.

Finally, what is Ω, in terms of only b and g, at a time where N = 2Mg?
This is the precession frequency – note how the system looks a lot like a gyroscope.

We learned in lecture that Ω =
τ

Lspin,cm
, but this only holds if Lspin,cm � Lorbital, which doesn’t

appear to be the case here. In the case of a typical gyroscope, the spin could be several thousand
rpm (200π rad/s or more), while the orbits was closer to 5 per minute or even less.
Here, the two are much closer together.

We can solve this in (at least?) two ways. One is, in fact, to use the above equation:

Ω =
2RMg −RMg

1
2ΩRMb

Ω2 =
g
1
2b

Ω =

√
2g

b

The second is to find the torque as
dL

dt
(i.e. take the time derivative of L above) and set that

equal to the torque we found earlier. However, to do this properly, we need to consider the
directions properly too. Check the book (chapter 22) for a proper derivation. The result is:

dL

dt
=

Ω2RMb

2
= RMg

Ω2b = 2g

Ω =

√
2g

b

The source of the extra Ω is tricky, since I have not written all this in terms of components and
unit vectors. The source of it is due to the differentiation of the r̂ unit vector:

dr̂

dt
=
dθ

dt
θ̂

228



where θ is the position along the circle, and θ̂ is the unit vector in the azimuthal direction (in
cylindrical coordinates). Ω is just the time rate of change of this angle, by definition, so that

Ω =
dθ

dt
. Therefore, in terms of vectors,

Lspin,cm =
ΩRMb

2
(−r̂)

dLspin,cm
dt

=
ΩRMb

2

(
−dr̂
dt

)
=

ΩRMb

2

(
−Ωθ̂

)
The magnitude is therefore multiplied by Ω in this differentiation. I apologize for the sloppiness
here; again, check the book if you’re looking for a rigorous treatment of this problem.

(51) Because drum B (the one at the top) is free to rotate, this problem is not quite as easy as
it might look to begin with. We must assume that it too rotates, and that the tape is unrolled
from both drums at the same time.

Okay then, let’s see. First, let’s consider the linear acceleration of drum A, which will certainly
give us more than one unknown. Using downwards as the positive direction,

Ma = Mg − T

The string (tape?) will unroll, which means we can also consider the angular acceleration, due
to the torque provided by this tension. The torque relative to the center of drum A τA = Icα,
which is also simply R×T, where R is the position vector from the center (since we take that
as our origin for the torque) to the edge of drum A.

RT =

(
1

2
MR2

)
αA

Here is where we must be very careful. We can not use a = αR here! That holds when the drum
unrolls such that 100% of the added length of tape comes from the drum – but both drums are
unrolling at the same time! In other words, we don’t have pure roll in this situation. Instead,
we must consider the torque and angular acceleration of drum B. Since both radius, mass and
tension are all the same, we find

RT =

(
1

2
MR2

)
αB

By comparing these two last equations, we don’t even need to solve either so find αA = αB;
everything except those variable names are the same in both equations.

Finally, we can consider the position (and change in position) considering how much tape is
unrolled. Following the book’s approach, an amount R∆θA is unrolled from the first drum in
some time ∆t, and the same thing except with a B index holds for drum B. The distance fallen
for drum A is the sum of the two, i.e. the total amount of tape unwound. If we take the time
derivative of these expressions, we get
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dy

dt
= R

dθA
dt

+R
dθB
dt

... and again:

d2y

dt2
= a = R(αA + αB)

The values of αA = αB in terms of the tension is

2T

MR
= αA = αB

And using the first equation we found, T = M(g − a), so

αA = αB =
2

MR
M(g − a)

αA = αB =
2

R
(g − a)

So at this stage, we have two equations:

αA = αB =
2

R
(g − a)

a = R(αA + αB)

Substitute the top one into the lower one:

a = 2R(
2

R
(g − a))

a = 4g − 4a

a =
4

5
g

The acceleration is higher than the 2
3g we find if the top drum cannot spin, and we therefore

assume pure roll.

(52) Let’s first consider the vertical forces on the beam. We have three weights, balanced by the
same tension in two places; the tensions need to be decomposed, though. If the angle was 90
degrees, the vertical component of the tension would clearly be at a maximum, so we need a
sine in there (which drawing it out and doing the trigonometry confirms):

g(mA +mB +mC) = 2T sin θ

We only need to divide both sides by 2 sin θ, and we have the answer to part (a):
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g(mA +mB +mC)

2 sin θ
= T

For part (b), we need to consider the torque on the system. We can calculate torques relative to
any point of our choosing, but what point would make things the easiest? If we choose x = 0, the
torque due to mass C disappears. The same argument holds for other points and other masses.
Just below the cable, between the two tensions, the torques due to both tensions cancel out.

Because the answer doesn’t allow θ and doesn’t allow g, we should choose the point where the
tensions cause no torque. That way, all disallowed variables should either not enter the equation
(θ) or cancel (g).

I will call that point b = `1 + (`2 − `1)/2 =
`1 + `2

2
, to reduce clutter in the torque equation. I

use out of the screen as the positive direction.

τb = bgmC − (x− b)gmB − (y − b)gmA

This must be equal to zero. g cancels, as hoped for/expected.

0 = bmC − (x− b)mB − (y − b)mA

xmB = bmC + bmB − ymA + bmA

x =
b(mC +mB +mA)− ymA

mB

x =
`1+`2

2 (mC +mB +mA)− ymA

mB

We would, in the end, find the same answer if we calculated the torque relative to any other
point.

(53) There are four forces on the beam (with 1 or 2 components each): normal force (2
components) at the hinge, gravity acting purely downwards at the center of mass (L/2), gravity
acting purely downwards at d and the tension (2 components) at the end of the beam.

The tension clearly acts upwards and inwards, so the normal force must act outwards (towards
the right), as they are the only two horizontal forces. Whether the normal force acts upwards or
downwards I don’t know however, since there is also gravity in the mix. I will guess that it acts
upwards, and so if it turns out negative, I guessed wrong.

For the tensions, we have

Tx = −T cos θ

Ty = T sin θ

using a coordinate system where +x is towards the right. We can now calculate the sum the
forces in the vertical direction to zero:

Ny + T sin θ − g(m1 +m2) = 0
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One equation, two unknowns. Next, we can consider torque. The net torque relative to any
point must be zero. If we choose the point right at the hinge, the unknown normal force doesn’t
cause a torque, so we get

g

(
L

2
m1 + dm2

)
− LT sin θ = 0

The horizontal forces also cannot cause at torque relative to this point. We now have two
equations and two unknowns, though we also need to find Nx later on. That turns out to be
trivial, however, so let’s begin with T and Ny.

Note that T is the only unknown in this second equation, so we start by finding that:

g

(
L

2
m1 + dm2

)
= LT sin θ

g
(
L
2m1 + dm2

)
L sin θ

= T

For the given values, T = 1691.5 newton. We can then find Ny by solving the previous equation
for that, and sticking in this value of T .

Ny = g(m1 +m2)− T sin θ

Ny = g(m1 +m2)−
g
(
L
2m1 + dm2

)
L

For the given values, Ny = 1087.8 newton.

As for Nx, it and Tx are the only two horizontal forces. Therefore, they must be equal in
magnitude, and so Nx = T cos θ = 1385.6 N.

(54) The vertical forces consist of the normal force where the ladder touches the ground (I call
this point Q), gravity due to the person at d/3 along the length, and gravity at the ladder’s
center of mass d/2 along the length. Therefore,

NQ = g(m1 +m2)

In the horizontal direction, we have the normal force from the wall (point P) NP towards the
left, and a frictional force fs ≤ µNQ at point Q towards the right (since the ladder wants to slip
towards the left).
This gives us, just at the edge of slipping (fs = µsNQ, i.e. the maximum friction possible):

NP = fs = µsNQ

Next, we can consider the torque. I will calculate them relative to point Q, so that two out of
the five forces/force components “disappear” (they can’t cause torque through that point). I will
use into the screen (clockwise rotation) as positive, since that is how the ladder wants to rotate.
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Now, these cross products depend on the angle, but the angle between the position vector from
Q to where gravity acts, and the gravitational force vector, is not θ. Indeed, it’s easy to see that
if θ = 0, the angle between them would be 90 degrees. The relevant angle is 90◦ − θ, so that is
what we need for the cross products; also, sin(90◦ − θ) = cos(θ).
θ is the relevant angle for the normal force at P, however, so that one remains a sine.
Alternatively, we can try to find the perpendicular distance of either vector, and multiply that
by the full magnitude of the other, which is the same thing.

τQ =
d

3
m2g cos θ +

d

2
m1g cos θ − dNP sin θ

This needs to be equal to zero. We can set it equal to zero, solve for NP (which we earlier said
was equal to fs in magnitude) and find the answer for part (a):

0 =
d

3
m2g cos θ +

d

2
m1g cos θ − dNP sin θ

NP =
d
3m2g cos θ + d

2m1g cos θ

d sin θ

fs = NP = g cot θ
(m2

3
+
m1

2

)
(Since fs = NP .)
All variables above are known, so we can calculate fs = 418.5 N.

Next, we need to find µs. fs = µsNQ, and we know NQ to be the sum of the two weights,
g(m1 +m2).

µs =
1

g(m1 +m2)
g cot θ

(m2

3
+
m1

2

)
µs =

1

m1 +m2
cot θ

(m2

3
+
m1

2

)
µs =

cotθ(2m2 + 3m1)

6(m1 +m2)

In terms of numbers, µs ≥ 0.427 will meet this condition, so that there is no sliding.

Next, they want the magnitude and angle of the contact force. NQ = g(m1 +m2) = 980 N, and
fs = 418.5N . In terms of unit vectors,

Cladder,ground = fsx̂+NQŷ

The magnitude of this vector is Cladder,ground =
√

418.52 + 9802 = 1065.6 N. The angle α must be

less than 90 degrees, or the friction would point towards the left. It is found as α = arctan
NQ

fs
,

which is about 1.167 radians, or 66.88 degrees.

(55) The problem description certainly sounds complex, but given the diagram and even a free
body diagram, this should be one of the easier problems of the week. I choose a coordinate
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system with x = 0 and y = 0 at the elbow joint, with +x to the right and +y upwards (which I
just noticed is marked in the free body diagram).

We need a net force of zero in the vertical direction, which gives us our first equation (equating
upwards and downwards forces):

T = F +m1g +m2g

where m2g is equal in magnitude to the normal force from the hand to the ball.

Next, the torques must be zero, relative to any point of our choosing. I choose the center of the
coordinate system, so that F causes no torque. Downwards forces then cause a counterclockwise
(into the screen) torque, which I denote as positive.

τ = −dT + sm1g + 2sm2g

This must be equal to zero; we can set it as such and solve for T :

0 = −dT + sg(m1 + 2m2)

T =
sg(m1 + 2m2)

d

This answers part (a); for part (b), we solve the force equation for F and substitute in T .

F = T − g(m1 +m2)

F =
sg(m1 + 2m2)

d
− g(m1 +m2)

Indeed quite easy compared to the previous ones.

(56) The possibly relevant values in the handout are (all values for steel, of course):
Y = 20× 1010 N/m2

Ultimate tensile strength = 5.2× 108 N/m2

Density: ρ = 8× 103 kg/m3

This problem is fairly similar to problem 9, which I solved prior to this one.

First, we need to calculate the tension at the center. The book has a derivation in chapter 9.
The result is

T (r) =
mω2

2L
(L2 − r2)

T (0) =
1

2
Lmω2

as r is the distance from the center. (m is the total mass of the rod, while L is the length
assuming we rotate it about its end.)

We can write for the total mass m = ALρ, where A is the unknown cross-sectional area of the
stick. That gives us, for the tension at the center,
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T (0) =
1

2
AL2ρω2

The ultimate tensile stress is a pressure, Pult = F/A. We need to multiply it by the cross-sectional
area to get a force, that we can compare with the tension. We can then set the two equal and
solve for ω.

1

2
AL2ρω2 = PultA

A cancels, and we can solve to find

ω =

√
2Pult
L2ρ

However, in this equation, L is not the one meter length of the meter stick! It is half that: it is
the length that sticks out from the center, and since we rotate the stick about its midpoint, we
get half a meter for L. This then gives ω ≈ 721 rad/s, which is about 6900 rpm.

(57) The stick is leaning towards a wall on the left, and θ is measured between the vertical and
the stick, so that it would be 0 if the stick was upright.

This problem is very similar to the one with the leaning ladder, only that there is now a frictional
force along the wall also.
I will use the same naming scheme of point Q touching the ground (normal force NQ) and point
P touching the wall (normal force NP ). As for friction, I will use FQ and FP .
Aside from those four, there is only one force remaining: gravity, acting on the center of mass.
Apparently, this must cancel out (the mass is not given), but I will call it m while solving.

The frictional force on the wall must be upwards, since the stick wants to slide down. The
frictional force on the floor is towards the left, since the stick wants to slide to the right. I will
use a standard coordinate system with +x being towards the right and +y being upwards.
The problem notes that the stick is just about to slide at the wall, so FP = µsNP holds there.

However, how could it slide at the wall without also sliding on the floor? It’s a rigid stick; unless
it goes off into the third dimension, it cannot slide at the wall while staying in place on the floor.
Not only that, but this might just be a statically indeterminate problem if we don’t consider it
to be about to slip in both places at once. That is, if we don’t assume that, we will have more
unknowns than equations, and need extra information. We haven’t learned about those in the
course, so in short, I assume that it is about to slip in both places, so that also FQ = µsNQ

holds, rather than the general case FQ ≤ µsNQ which doesn’t help us a whole lot.

First off, we need the sum of forces in both directions to be zero. Starting with the vertical
forces,

FP +NQ −mg = 0

µsNP +NQ = mg

Next, the horizontal forces:
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NP − FQ = 0

NP = µsNQ

And finally, the torque, relative to point Q (or any other point, but I choose point Q), must be
zero.
FQ and NQ act through this point, and cannot cause any torque relative to it. The torque due
to gravity is (`/2)mg sin θ; the others are in the opposite direction, with FP = µsNP causing a
torque `µsNP sin θ, and NP causing a torque `NP cos θ.

(`/2)mg sin θ − `NP (µs sin θ + cos θ) = 0

So, three equations, with µs, NP and NQ as unknowns. We only really care about µs, though.
We can eliminate NP using NP = µsNQ, which leaves two equations and two unknowns:

(`/2)mg sin θ − `µsNQ(µs sin θ + cos θ) = 0

µ2
sNQ +NQ = mg

We can solve the second one for NQ:

µ2
sNQ +NQ = mg

NQ(1 + µ2
s) = mg

NQ =
mg

1 + µ2
s

We can then combine the two equations; in the second equation below, mg cancels, ` cancels,
and we can divide through by sin θ. The rest is just simplification to get it into a standard form
for a quadratic:

`mg

2
sin θ − `µsmg

1 + µ2
s

(µs sin θ + cos θ) = 0

1

2
− µs

1 + µ2
s

(µs + cot θ) = 0

1

2
− µ2

s + µs cot θ

1 + µ2
s

= 0

1− µ2
s − 2µs cot θ

2(1 + µ2
s)

= 0

1− µ2
s − 2µs cot θ = 0

µ2
s + 2 cot(θ)µs − 1 = 0

Finally, after all that massaging, we can solve this for µ.
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µs =
−2 cot θ ±

√
4 cot2 θ + 4

2

µs = − cot θ ±
√

cot2 θ + 1

µs = − cot θ +
1

sin θ

Only the positive root gives a meaningful answer (the other one gives µs < 0 which is unphysical).
We can simplify this even one step further:

µs = tan
θ

2

Lots of work if you do the math manually (unless I missed some obvious simplifications), but
the result is certainly very elegant!

Sidenote: this problem was graded incorrectly until November 27-28 (depending on timezones
etc); the grader was set such that tan(θ/2) was correct if you specified θ as the number given in
degrees, despite the calculator using radians. As such, the accepted µs was about 2.24(!) in my
case, rather than the actually correct 0.36 or so that is now accepted.

(58) I will begin by assuming that there is no friction. That means that forces D, C and B are
purely horizontal, and that force A is purely vertical. It also means that the middle ball must
provide both an upwards and a rightwards force on the top ball.

Drawing this out (anything else might just be insanity; see partial drawing below), it’s clear
that A = 3mg, or there cannot be equilibrium, if it A is the only upwards force.

The distance between the center of the bottom ball and the center of the middle ball is exactly
2R (same for the middle and top balls).
The distance from the right side to the center of the bottom ball is R; the distance from the
left side to the center of the middle ball is also R. Therefore, since the entire tube is 3R, the
horizontal distance between the two centers must also be R.

Using the Pythagorean theorem, the vertical distance between the centers must then be
√

3
times R (for both the top-middle and the middle-bottom balls).

So, forces... forces...
Consider the forces on the top ball. There is a force to the left, which cannot cause a torque
relative to its center, since the angle between the position vector and the force vector would be
180 degrees.
Likewise, mg due to gravity cannot cause a torque, as it acts on the center.
This means that only the contact force due to the middle ball remains, which must therefore
create no torque, or the top ball would have a net torque! There is no other force that could
possibly create an opposing torque and cancel it out.
The only way this can happen is if the net normal force is pointing straight towards the center
of the top ball!

This then puts another constraint on the normal force, so we now know: it must be D in
magnitude to the right (or there is a net horizontal force on the top ball), mg up (or there is a
net downwards force on the top ball), and be at the correct angle, or there is a net torque.

We can draw a triangle showing the angle; as mentioned, it is R wide and
√

3R high, with a 2R
hypotenuse (between the two balls’ centers). Drawing the angle, we find
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tanα =

√
3R

R
=
√

3

We then draw a vector triangle for the forces; the angle must be the same, or the net force won’t
point towards the center of the top ball! For the same α, clearly tanα must also be the same.
Relating the forces instead, we have D horizontally and mg on the vertical side, so

tanα =
mg

D
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I didn’t label the forces here, since it make it very difficult to get it at all readable. Doing so
is practically mandatory to solve this though, in my opinion; this was my second, simplified
drawing.
(This is perhaps the cleanest thing I’ve drawn in years, which is why I don’t post hand-drawn
stuff often. It’s usually much harder to read, which says something!)

α must then be the same for the net force vector, or that force will create a torque on the top
ball. We can set the two tangents equal and find D:
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mg

D
=
√

3

D =
mg√

3

Nice! What about the bottom ball? We have a very similar situation there! There is an upwards
force 2mg to the middle ball instead of mg, since the bottom ball supports both of those above
it.

For the sides, we again find:

tanβ =

√
3R

R
=
√

3

The forces again need the same angle, so we can find the tangent for the forces, and set the two
equal again:

tanβ =
2mg

B
√

3 =
2mg

B

B
√

3 = 2mg

B =
2mg√

3

Finally, for the middle ball, we can simply sum the horizontal forces; the one to the right needs
to be equal to the sum of those to the right, or there is a net force. C to the right must cancel
with B +D to the left, and we know those two.

C = B +D

C =
2mg√

3
+
mg√

3
=

3mg√
3

=
3
√

3mg

3
=
√

3mg

And that’s it! Easy once I found the trick, but I have to admit it took a while. If I hadn’t drawn
it out, it would have been way harder.

(59) The equations look like capstan equations, which is not entirely unexpected: we have
differing tensions in something wound around a cylinder (or two).
Indeed, the recommended reading is the book’s derivation of the capstan equation.

Let’s start by looking at part one. I will look at the rightmost wheel, and basically assume the
other one doesn’t exist.
T2 > T1, or the torque would be in the opposite direction of the rotation, and so it wouldn’t be
in any kind of equilibrium. Therefore, the frictional force is counterclockwise along the wheel,
“helping” T1, so that there can be equilibrium.
We therefore have the same situation as the book, and don’t need to think of the opposite case
(reversing directions or such).
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Since the derivation is fairly complex, and the book derivation applies to this situation, I will
use some results from there, to get started. There is a sign difference that we can ignore if we
only keep track of directions/which tension is the larger one.

dT

T
= µsdθ

for one wheel, which answers part (a) as-is.
Part (b) is not as straightforward, with or without the book’s help. First, we have one useful
relationship given to us in the question:

τ = R(T2 − T1)⇒ τ

R
= T2 − T1

We’ll need that later.
If we integrate the previous equation, from T1 to T2 on the left-hand side, and from 0 to π on
the right, we find

ln
T2

T1
= µsπ ⇒

T2

T1
= eµsπ

And so, indeed, T2 will be larger than T1. Solved for T2, we have, of course

T2 = T1e
µsπ

We now have two equations and two unknowns, so we can solve the rest from here.

τ

R
= T2 − T1

T2 = T1e
µsπ

We can find T1 by substitution; we stick T1e
... in for T2 in the first equation and solve:

T1e
µsπ − T1 =

τ

R

T1 (eµsπ − 1) =
τ

R

T1 =
τ

R

1

eµsπ − 1

We have a simple relationship between T2 and T2 above, so finding T2 is trivial now – at least
getting it mathematically equivalent. To get it to look like one of the answer options (as this
was the week’s only multiple choice question), we need to divide through by the exponential,
and use 1/ex = e−x:
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T2 = T1e
µsπ =

τ

R

eµsπ

eµsπ − 1

=
τ

R

1

1− 1
eµsπ

=
τ

R

1

1− e−µsπ

(60) Hmm, I wonder if this can be solved in the very naive way. If we consider it attached at
the very top, then essentially 100% of the weight is below that point. Therefore, we only need
to find the stress due to the weight of the entire bar, mg = (ALρ)g.

The ultimate tensile stress is given as a pressure, force per unit area; Pult = F/A. We need to
multiply it by the cross-sectional area A to find a force (comparable to a weight, since both are
in newtons):

ALρg = PultA

A cancels:

Lρg = Pult

L =
Pult
ρg

And indeed, plugging in the values, this is correct! The answers are 4574 m (4.6 km) for iron,
and 10194 m (10.2 km) for titanium.

(61) The recommended reading gives us a not-so-small hint that this is a simple harmonic
oscillation.
With the condition given, there will always be slipping, and therefore always kinetic friction.
We know nothing about the speed of the rotation, but since the frictional force is given by µkN ,
that shouldn’t matter, as long as there is always slipping.

Newton’s second law in the horizontal direction (with rightwards as positive) gives us

max = µkNL − µkNR = µk(NL −NR)

Rewritten,

ẍ =
µk
m

(NL −NR)

Vertically (with upwards as positive):

0 = NL +NR −mg
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Two equations, three unknowns. Now, if the center of the bar is at x > 0, it’s clear that
NR > NL, and vice versa if x < 0. The above equations doesn’t account for that. The net
torque on the bar (about the center, say) must also be zero, or it won’t remain horizontal. We
can capture that as

0 = (x+D/2)NL − (D/2− x)NR

since gravity acting at the center of mass can cause no torque relative to the center of mass.
It’s unfortunate that we need to find NL and NR too, or there would certainly be less algebra
involved. We begin by finding NL and NR; for that, we only need the last two equations. After
that, we have one (differential) equation and one unknown left.

The vertical force equation easily gives us

NL = mg −NR

Solving the torque equation for NR gives us

(x+D/2)

(D/2− x)
NL = NR

Substitute that back:

NL = mg − (x+D/2)

(D/2− x)
NL

NL

(
1 +

(x+D/2)

(D/2− x)

)
= mg

NL =
mg

1 + (x+D/2)
(D/2−x)

NL =
mg(D − 2x)

2D

And, substitute that into the equation for NR, below:

NR = mg −NL

NR = mg − mg(D − 2x)

2D

For part (b), we substitute this back into the ẍ equation:

ẍ =
muk
m

(
mg(D − 2x)

2D
−mg +

mg(D − 2x)

2D

)
ẍ = µkg

(
D

D
− 2x

D
− 1

)
ẍ = −2µkgx

D
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The sign changes in step 1, since we get a double negative on the fraction when calculating
NL −NR. Finally, for part (c), we notice that this is a simple harmonic motion, and solve it
accordingly.

ẍ+ µkg
2

D
x = 0

x = x0 cos(ωt)

ω =

√
2µkg

D

So, all in all,

x = x0 cos

(√
2µkg

D
t

)

If we write x as x = cos(ωt+ ϕ) and set t = 0, we find

x0 = x0 cos(ϕ)

and so cos(ϕ) = 1⇒ ϕ = 0, which is why I didn’t include it above. (I figured as much since it
was released from rest, not to mention they didn’t ask for it.)

(62) First, let’s identify the forces present. There’s the spring force of magnitude kx, and the
frictional force Ff .
When the spring is stretched, the spring force is towards the right, in the direction of the
acceleration. The frictional force is opposite that, and will provide a torque that causes the
cylinder to roll.
If we use rightwards as positive (since the acceleration will begin in that direction), kx will begin
negative, since the initial position is x = −x0. As usual, then, we must write −kx for the spring
force. The frictional force also has a negative, since it’s towards the left when the acceleration is
positive:

mẍ = −kx− Ff

Next, since there is pure roll, we can use a = ẍ = αR. We also have that τ = Iα, which leads us

to (via τ = RFf and I =
1

2
MR2):

RFf = (
1

2
MR2)(ẍ/R)

Ff =
1

2
Mẍ

We could also write an equation relating vertical forces, but it turns out we don’t need to.
If we substitute the value of Ff into the previous equation,
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Mẍ = −kx− 1

2
Mẍ

3

2
Mẍ = −kx

ẍ+
2k

3M
x = 0

A simple harmonic oscillation, as we would expect. The solution is then

x = x0 cos(ωt+ π)

ω =

√
2k

3M

T =
2π

ω
= 2π

√
3M

2k

where I wrote the phase as π since at t = 0, we need x = −x0. I could also have written the
entire right-hand side as negative.

(63) The liquid has a velocity that is the same everywhere (under these conditions), ẋ. Therefore,
the liquid as a whole has a kinetic energy of

1

2
Mẋ2 =

1

2
ALρẋ2

There is also gravitational potential energy. We define U = 0 at the equilibrium point. The
change is then that a height of fluid x of mass m = Axρ is moved upwards a distance x. (It’s
essentially taken from the left side and moved upwards on the right side, gaining potential
energy.)
The sum of these two energies must be a constant:

1

2
ALρẋ2 +Axρgx = constant

using mgh = (Axρ)gx.

We take the time derivative of this; the rate of change in the energy must be zero if it’s constant,
which the differentiation takes of for us.

1

2
ALρẋ2 +Aρgx2 = constant

1

2
ALρ2ẋẍ+Aρg2xẋ = 0

Lẍ+ 2gx = 0

ẍ+
2g

L
x = 0

ẋ, A and ρ cancel, and we end up with a simple harmonic oscillation, as expected (and as usual,
at this point!). The solution is
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x = x0 cos(ωt)

ω =

√
2g

L

f =
1

2π

√
2g

L

... though in reality there will be losses which cause damping, so T will be longer, and the
amplitude will decrease rather rapidly, rather than stay constant forever as this solution predicts.

(64) The total volume of the hydrometer is

Vsphere + Vcylinder =
4

3
πR3 + πr2`

while the submerged part is

4

3
πR3 + πr2(`− h)

Since it floats, the upwards buoyant force must be equal to the downwards gravitational force
Mg.
The buoyant force is equal to the weight of the displaced water, which is the submerged volume
times ρ (which is its mass) times g. That is,

Mg = ρg

(
4

3
πR3 + πr2(`− h)

)

ρ =
M

4
3πR

3 + πr2(`− h)

(65) The volumetric flow rate must be the same both the thick part at d1 and the thinner at d2,
since water is practically incompressible.
Therefore, the velocity must be greater at point 2 than at point 1.
I will, for consistency, use v1 for the velocity at point 1; v1 = vm.

Q = v1A1 = v2A2

Q = v1π

(
d1

2

)2

= v2π

(
d2

2

)2

This gives us

v1d
2
1 − v2d

2
2 = 0
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We can also relate the energies at the two points via Bernoulli’s equation. We have kinetic
energy (per unit volume), gravitational potential energy (per unit volume), and pressure. The
GPE is equal at the two points, as they are at equal height with equal ρ, so if we wrote it down
it would simply cancel.

1

2
ρv2

1 + P1 =
1

2
ρv2

2 + P2

We don’t know v1, v2, P1 or P2, so we have four unknowns. We can rewrite this a bit, though.

P1 − P2 =
1

2
ρ
(
v2

2 − v2
1

)
(A.1)

We can use the height of the water columns to figure out the pressure difference.

The air at the top of the water columns are at atmospheric pressure, call it P0 = 1 atm.
The height of the left column, measured from the horizontal center line, depends on P1 −P0, via
Pascal’s law:

P1 − P0 = ρgh1

The right column is similar.

P2 − P0 = ρgh2

We don’t know h1 or h2, but we know h1 − h2 = ∆h. If we subtract the two equations,

(P1 − P0)− (P2 − P0) = ρgh1 − ρgh2

P1 − P2 = ρg∆h

We use this in equation (A.1). That gives us these two equations (after ρ cancels):

g∆h =
1

2

(
v2

2 − v2
1

)
v1d

2
1 − v2d

2
2 = 0

Since we don’t care about v2, we can solve the second equation for it, substitute that into the
first, and then just forget about v2 altogether.

v2 = v1
d2

1

d2
2
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2g∆h =

(
v1
d2

1

d2
2

)2

− v2
1

2g∆h = v2
1

(
d4

1

d4
2

− 1

)
√√√√ 2g∆h

d4
1

d4
2
− 1

= v1

√
2g∆h d4

2

d4
1 − d4

2

= v1

For the number we were given, this gives us v1 = vm = 1.6174 m/s.

Using the simple relationship Q = v1A1 = v1

(
d1

2

)2

we find a flow rate of Q = 0.203 m3/s.

(66) We can solve this in multiple ways:

Solution 1

The pressure at that depth is P1 = 1 atm + ρgh. The pressure difference between inside and
outside the bucket is then simply ρgh.
We can apply Bernoulli’s equation here, again while ignoring the term related to gravitational
potential energy, as there is no height difference involved (if we consider a point at that depth,
but at the container’s left side, as being inside). Using P1 for the pressure inside the bucket at
depth h, and P2 for the pressure outside:

1

2
ρv2
inside + P1 =

1

2
ρv2 + P2

1

2
ρv2
inside + 1 atm + ρgh =

1

2
ρv2 + 1 atm

1

2
v2
inside + gh =

1

2
v2

h =
v2

2g

Here, I consider vinside to be negligible compared to v, so I ignore it. It we consider vinside to be
the velocity just inside the hole, that is clearly not correct. However, the rest of the equation is
equally valid at the leftmost edge of the container.

Solution 2

I feel a bit funny about the assumption vinside = 0 while considering a point at depth h in the
liquid, as the equation doesn’t specify where that point is: near the hole, or far from it.
We can solve this in a slightly different way. We again begin with Bernoulli’s equation, but this
time, we consider a point at the surface of the liquid (above the hole), and a point just outside
the hole. Both are exposed to the atmosphere, so P1 = P2 = 1 atm and we don’t need to specify
that in the equation, as it will simply cancel.
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Instead, we have the gravitational potential energy per unit volume, ρgy, in the equation. On
the left side, we have at the top of the container, where it is ρgh; I define the zero level to be at
the hole, so the term only exists on the left-hand side.

1

2
ρv2
surface + ρgh =

1

2
ρv2

2gh = v2

h =
v2

2g

As before, we approximate the other velocity, this time at the surface, to be zero. We find
exactly the same result using this method.

(67) The buoyant force is given by the weight of the displaced fluid – air in this case – so this
should be very simple. Weight is given by mass times g, while mass is ρV , so FB = V ρairg:

FB = (540 000.0 m3)(4.3× 10−3 kg/m3)(10 m/s2) ≈ 23220N

Very simple indeed.
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Appendix B

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

〈http://fsf.org/〉

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright
law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of
the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.
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A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parenthe-
ses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you mod-
ify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section.
You may omit a network location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent
are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.
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O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the
list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at
the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled
“History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of
this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage
or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the
compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the
entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless
and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by
some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
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The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number
of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that
a proxy can decide which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2)
were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.
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