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Chapter 1

Numbers and Functions

The subject of this course is “functions of one real variable” so we begin by wondering
what a real number “really” is, and then, in the next section, what a function is.

1.1 What is a number?

1.1.1 Different kinds of numbers.

The simplest numbers are the positive integers
17 27 37 47 U

the number zero
0,

and the negative integers
s =4, -3, -2, —1.

13

Together these form the integers or “whole numbers.”

Next, there are the numbers you get by dividing one whole number by another (nonzero)
whole number. These are the so called fractions or rational numbers such as

ryyreaey

or
11 2 1 2 3 4

R A U S
By definition, any whole number is a rational number (in particular zero is a rational
number.)

You can add, subtract, multiply and divide any pair of rational numbers and the result

will again be a rational number (provided you don’t try to divide by zero).

One day in middle school you were told that there are other numbers besides the rational
numbers, and the first example of such a number is the square root of two. It has been



known ever since the time of the greeks that no rational number exists whose square is
exactly 2, i.e. you can’t find a fraction * such that

(%)2 =2, ie m*=2n’

Nevertheless, if you compute 2 for some values of x between 1 and 2, x x?

and check if you get more or less than 2, then it looks like there should 1.2 | 1.44

be some number z between 1.4 and 1.5 whose square is exactly 2. So, 1.3 | 1.69

we assume that there is such a number, and we call it the square root of 1.4 | 1.96 < 2
2, written as V/2. This raises several questions. How do we know there 1.5 | 2.25 > 2
really is a number between 1.4 and 1.5 for which 22 = 2?7 How many 1.6 | 2.56
other such numbers are we going to assume into existence? Do these

new numbers obey the same algebra rules (like a + b = b + a) as the rational numbers?
If we knew precisely what these numbers (like v/2) were then we could perhaps answer
such questions. It turns out to be rather difficult to give a precise description of what a
number is, and in this course we won'’t try to get anywhere near the bottom of this issue.
Instead we will think of numbers as “infinite decimal expansions” as follows.

One can represent certain fractions as decimal fractions, e.g.

279 1116

— = —— = 11.16.
25 100 0

Not all fractions can be represented as decimal fractions. For instance, expanding % into
a decimal fraction leads to an unending decimal fraction

1
3= 0.333333333333333 - --

It is impossible to write the complete decimal expansion of % because it contains infinitely
many digits. But we can describe the expansion: each digit is a three. An electronic
calculator, which always represents numbers as finite decimal numbers, can never hold
the number % exactly.

Every fraction can be written as a decimal fraction which may or may not be finite. If
the decimal expansion doesn’t end, then it must repeat. For instance,

1
- = 0.142857 142857 142857 142857 . . .

Conversely, any infinite repeating decimal expansion represents a rational number.

A real number is specified by a possibly unending decimal expansion. For instance,
V2 = 1.414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 3769 . ..

Of course you can never write all the digits in the decimal expansion, so you only write
the first few digits and hide the others behind dots. To give a precise description of a
real number (such as v/2) you have to explain how you could in principle compute as
many digits in the expansion as you would like. In this text we will not be going into the
details of how this should be done.



1.1.2 A reason to believe in /2.

The Pythagorean theorem says that the hypotenuse of a right triangle with sides 1 and
1 must be a line segment of length v/2. In middle or high school you learned something
similar to the following geometric construction of a line segment whose length is /2.

Take a square with side of length 1, and construct a new square one of |
whose sides is the diagonal of the first square. The figure you get consists |
of 5 triangles of equal area and by counting triangles you see that the
larger square has exactly twice the area of the smaller square. Therefore
the diagonal of the smaller square, being the side of the larger square, is v/2 as long as
the side of the smaller square. To find out more about the properties of the number v/2
watch this YoulD by Numberphile .

1.1.3 Why are real numbers called real?

b

All the numbers we will use in this first part of this text are “real numbers.” At some
point (later in the text) it becomes useful to assume that there is a number whose square
is —1. No real number has this property since the square of any real number is positive, so
it was decided to call this new imagined number “imaginary” and to refer to the numbers
we already have (rationals, V/2-like things) as “real.”

1.1.4 The real number line and intervals.

It is customary to visualize the real numbers as points on a straight line. We imagine a
line, and choose one point on this line, which we call the origin. We also decide which
direction we call “left” and hence which we call “right.” Some draw the number line
vertically and use the words “up” and “down.”

To plot any real number x one marks off a distance = from the origin, to the right (up)
if x > 0, to the left (down) if z < 0.

The distance along the number line between two numbers x and y is |z — y|. In
particular, the distance is never a negative number.

% % ® : : O %
-3 -2 -1 0 1 2

Figure 1.1: To draw the half open interval [—1,2) use a filled dot to mark the endpoint which is
included and an open dot for an excluded endpoint.

Almost every equation involving variables x, y, etc. we write down in this course will be
true for some values of x but not for others. In modern abstract mathematics a collection
of real numbers (or any other kind of mathematical objects) is called a set. Below are
some examples of sets of real numbers. We will use the notation from these examples
throughout this course.

The collection of all real numbers between two given real numbers form an interval. The
following notation is used

10


https://www.youtube.com/watch?v=5sKah3pJnHI

]
T

-2 -1 0 1v2 2

Figure 1.2: To find v/2 on the real line you draw a square of sides 1 and drop the diagonal onto
the real line.

e (a,b) is the set of all real numbers = which satisfy a < z < b.

e [a,b) is the set of all real numbers x which satisfy a < z < b.

e (a,b] is the set of all real numbers x which satisfy a < z <b.

e [a,b] is the set of all real numbers x which satisfy a <z <b.

If the endpoint is not included then it may be oo or —oco. E.g. (—o0, 2] is the interval of
all real numbers (both positive and negative) which are < 2.

1.1.5 Set notation.

A common way of describing a set is to say it is the collection of all real numbers which
satisfy a certain condition. One uses this notation

A= {93 | = satisfies this or that condition}

Most of the time we will use upper case letters in a calligraphic font to denote sets.
(A,B.CD, ...)

For instance, the interval (a,b) can be described as
(a,b) ={z|a<z<b}
The set
B={z|2>-1>0}

consists of all real numbers x for which 22 — 1 > 0, i.e. it consists of all real numbers
x for which either z > 1 or x < —1 holds. This set consists of two parts: the interval
(—00, —1) and the interval (1, 00).

You can try to draw a set of real numbers by drawing the number line and coloring the
points belonging to that set red, or by marking them in some other way.

Some sets can be very difficult to draw. For instance,
€ = {x | z is a rational number}

can’t be accurately drawn. In this course we will try to avoid such sets.

Sets can also contain just a few numbers, like

D=1{1,2,3}

11



which is the set containing the numbers one, two and three. Or the set
&= {z|2*—42>+1=0}

which consists of the solutions of the equation z* —42?+1 = 0. (There are three of them,
but it is not easy to give a formula for the solutions.)

If A and B are two sets then the union of A and B is the set which contains all
numbers that belong either to A or to B. The following notation is used

AUB = {x | = belongs to A or to B or both.}

Similarly, the intersection of two sets A and B is the set of numbers which belong
to both sets. This notation is used:

ANB = {z | z belongs to both A and B.}

1.2 Functions

Wherein we meet the main characters of this text

1.2.1 Definition.

To specify a function f you must

1. give a rule which tells you how to compute the value f(x) of the function for a
given real number z, and:

2. say for which real numbers z the rule may be applied.

The set of numbers for which a function is defined is called its domain. The set of all
possible numbers f(x) as x runs over the domain is called the range of the function.
The rule must be unambiguous: the same rmust always lead to the same f(x).

For instance, one can define a function f by putting f(x) = y/x for all z > 0. Here
the rule defining f is “take the square root of whatever number you’re given”, and the
function f will accept all nonnegative real numbers.

The rule which specifies a function can come in many different forms. Most often it is a
formula, as in the square root example of the previous paragraph. Sometimes you need
a few formulas, as in

2z f <0
g(z) = Lo domain of g = all real numbers.
x? forxz >0

Functions which are defined by different formulas on different intervals are sometimes
called piecewise defined functions.

12



1.2.2 Graphing a function.

You get the graph of a function f by drawing all points whose coordinates are (z,y)
where  must be in the domain of f and y = f(x).

range of f

domain of f

Figure 1.3: The graph of a function f. The domain of f consists of all x values at which the
function is defined, and the range consists of all possible values f can have.

Y1

Yo

/

~

Figure 1.4: A straight line and its slope. The line is the graph of f(x) = mx + n. It intersects the
y-axis at height n, and the ratio between the amounts by which y and x increase as you move from
one point to another on the line is iﬂ%ﬂyg‘; =m.

1.2.3 Linear functions.
A function which is given by the formula
flz)=maz+n

where m and n are constants is called a linear function. Its graph is a straight line. The
constants m and n are the slope and y-intercept of the line. Conversely, any straight
line which is not vertical (i.e. not parallel to the y-axis) is the graph of a linear function.
If you know two points (xg, o) and (z1,y;) on the line, then then one can compute the
slope m from the “rise-over-run” formula

Y1 — Yo
m = .
Tl — X

13



This formula actually contains a theorem from Euclidean geometry, namely it says that
the ratio (y1 — o) : (x1 — xp) is the same for every pair of points (xg, 30) and (z1,y;) that
you could pick on the line.

1.2.4 Domain and “biggest possible domain. ”

In this course we will usually not be careful about specifying the domain of the function.
When this happens the domain is understood to be the set of all x for which the rule
which tells you how to compute f(z) is meaningful. For instance, if we say that h is the

function
h(z) =z

then the domain of A is understood to be the set of all nonnegative real numbers
domain of h = [0, 00)

since /x is well-defined for all x > 0 and undefined for x < 0.

A systematic way of finding the domain and range of a function for which you are only
given a formula is as follows:

e The domain of f consists of all = for which f(x) is well-defined (“makes sense”)

e The range of f consists of all y for which you can solve the equation f(z) = y.

1.2.5 Example — find the domain and range of f(z) = 1/22

The expression 1/z% can be computed for all real numbers z except x = 0 since this leads
to division by zero. Hence the domain of the function f(z) = 1/2% is

“all real numbers except 07 = {z |z # 0} = (—00,0) U (0, 00).

Y

To find the range we ask “for which y can we solve the equation y = f(z) for x,” i.e. we

for which y can you solve y = 1/2? for x?

If y = 1/2* then we must have x? = 1/y, so first of all, since we have to divide by y, y
can’t be zero. Furthermore, 1/y = z? says that y must be positive. On the other hand,
if y > 0 then y = 1/2? has a solution (in fact two solutions), namely x = +1//y. This
shows that the range of f is

“all positive real numbers” = {z | > 0} = (0, c0).

1.2.6 Functions in “real life. ”

One can describe the motion of an object using a function. If some object is moving along
a straight line, then you can define the following function: Let z(t) be the distance from
the object to a fixed marker on the line, at the time ¢. Here the domain of the function
is the set of all times ¢ for which we know the position of the object, and the rule is

14



Given t, measure the distance between the object and the marker at time t.

There are many examples of this kind. For instance, a biologist could describe the growth
of a cell by defining m(¢) to be the mass of the cell at time ¢ (measured since the birth of
the cell). Here the domain is the interval [0, 7], where T is the life time of the cell, and
the rule that describes the function is

Given t, weigh the cell at time t.

1.2.7 The Vertical Line Property.

Generally speaking graphs of functions are curves in the plane but they distinguish them-
selves from arbitrary curves by the way they intersect vertical lines: The graph of a
function cannot intersect a vertical line “r = constant” in more than one
point. The reason why this is true is very simple: if two points lie on a vertical line,
then they have the same x coordinate, so if they also lie on the graph of a function f,
then their y-coordinates must also be equal, namely f(z).

1.2.8 Examples.

The graph of f(z) = 23 — 2 “goes up and down,” and, even though it intersects several
horizontal lines in more than one point, it intersects ewery vertical line in exactly one
point.

Figure 1.5: The graph of y = 23 — x fails the “horizontal line test,” but it passes the “vertical line
test.” The circle fails both tests.

The collection of points determined by the equation x? + y? = 1 is a circle. It is not the
graph of a function since the vertical line x = 0 (the y-axis) intersects the graph in two
points P;(0,1) and P»(0,—1). See Figure 1.6.

1.3 Implicit functions
For many functions the rule which tells you how to compute it is not an explicit formula,

but instead an equation which you still must solve. A function which is defined in this
way is called an “implicit function.”

15



1.3.1 Example.

One can define a function f by saying that for each = the value of f(z) is the solution y
of the equation
2 4+2y—3=0.

In this example you can solve the equation for v,

Thus we see that the function we have defined is f(z) = (3 — 2%)/2.

Here we have two definitions of the same function, namely
(i) “y = f(z) is defined by 22 4+ 2y — 3 = 0,” and
(i) “f is defined by f(x) = (3 — 2?)/2.”

The first definition is the implicit definition, the second is explicit. You see that with an
“implicit function” it isn’t the function itself, but rather the way it was defined that’s
implicit.

1.3.2 Another example: domain of an implicitly defined func-
tion.
Define g by saying that for any z the value y = g(z) is the solution of
2+ 1y —3=0.

Just as in the previous example one can then solve for y, and one finds that

Unlike the previous example this formula does not make sense when z = 0, and indeed,
for = 0 our rule for g says that g(0) = y is the solution of

0°4+0-y—3=0, ie. yis the solution of 3 =0.
That equation has no solution and hence x = 0 does not belong to the domain of our

function g.

1.3.3 Example: the equation alone does not determine the func-
tion.

Define y = h(z) to be the solution of

=1
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W 7

Figure 1.6: The circle determined by 22 + y? = 1 is not the graph of a function, but it contains
the graphs of the two functions hj(x) = v1 — 22 and hy(z) = —v1 — 22.

~
~

If z >1or x < —1 then 22 > 1 and there is no solution, so h(x) is at most defined when
—1 <z < 1. But when —1 < x < 1 there is another problem: not only does the equation
have a solution, but it even has two solutions:

P?4+yi=1 = y=+vV1—-22ory=—VI1—a2
The rule which defines a function must be unambiguous, and since we have not specified
which of these two solutions is h(z) the function is not defined for —1 < x < 1.
One can fix this by making a choice, but there are many possible choices. Here are three
possibilities:

hi(x) = the nonnegative solution y of z* +y* = 1

hy(x) = the nonpositive solution y of 2% + 3 = 1

hy(2) hi(z) when z <0
€Tr) =
s ho(z) when z > 0

1.3.4 Why use implicit functions?

In all the examples we have done so far we could replace the implicit description of the
function with an explicit formula. This is not always possible or if it is possible the
implicit description is much simpler than the explicit formula. For instance, you can
define a function f by saying that y = f(x) if and only if

y* + 3y + 22 = 0. (1.1)

This means that the recipe for computing f(z) for any given x is “solve the equation
y3 + 3y + 22 = 0. E.g. to compute f(0) you set z = 0 and solve 3* + 3y = 0. The only
solution is y = 0, so f(0) = 0. To compute f(1) you have to solve y*+3y+2-1 =0, and
if you're lucky you see that y = —1 is the solution, and f(1) = —1.

In general, no matter what z is, the equation (1.1) turns out to have exactly one solution
y (which depends on x, this is how you get the function f). Solving (1.1) is not easy. In
the early 1500s Cardano and Tartaglia discovered a formula' for the solution. Here it is:

y= o) = ot Vita@ - (ot VIt

!To see the solution and its history visit

http://www.gap-system.org/~history/HistTopics/Quadratic_etc_equations.html
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The implicit description looks a lot simpler, and when we try to differentiate this function
later on, it will be much easier to use “implicit differentiation” than to use the Cardano-
Tartaglia formula directly.

1.4 Inverse functions.

If you have a function f, then you can try to define a new function f~!, the so-called
inverse function of f, by the following prescription:

For any given o we say that y = f~'(x) if y is the solution to the equation f(y) = x.
(1.2)
So to find y = f~!(x) you solve the equation x = f(y). If this is to define a function
then the prescription (1.2) must be unambiguous and the equation f(y) = x has to have
a solution and cannot have more than one solution.

A

Fa) @

Figure 1.7: The graph of a function and its inverse are mirror images of each other.

1.4.1 Examples.

Consider the function f with f(x) = 2z + 3. Then the equation f(y) = = works out to
be
2y+3=vx

and this has the solution

So f~!(x) is defined for all z, and it is given by f~'(z) = (z — 3)/2.

18



Next we consider the function g(x) = 2? with domain all positive real numbers. To see
for which z the inverse ¢g~!(z) is defined we try to solve the equation g(y) = z, i.e. we
try to solve y? = . If x < 0 then this equation has no solutions since y=0 for all y. But
if x > 0 then y~z does have a solution, namely y = /x.

So we see that ¢g~!(z) is defined for all nonnegative real numbers z, and that it is given
by g7} (z) = /.
1.4.2 Inverse trigonometric functions.

The familiar trigonometric functions Sine, Cosine and Tangent have inverses which are
called arcsine, arccosine and arctangent.

y=[(z) z=f"(y)

y =sinz (—7w/2 <z <m7/2) x = arcsin(y) (-1 <y<1)
Yy =cosx 0<z<m) x = arccos(y) (-1<y<1)
y =tanx (—7m/2 <x<m/2) x = arctan(y)

The notations arcsiny = sin~!y, arccosz = cos™ 'z, and arctanu = tan™'u are also
commonly used for the inverse trigonometric functions. We will avoid the sin ™! y notation
because it is ambiguous. Namely, everybody writes the square of siny as

(sin y)2 = sin’y.
Replacing the 2’s by —1’s would lead to

- 1
arcsiny = sin~ 'y = (sin y) b= ——,  which is not true!
sin y

To reinforce your understanding of what an inverse function is consider watching this
Yol by Mario

1.5 PROBLEMS

NUMBERS
1. What is the 2007" digit after the period in the expansion of %? 1378
2. Which of the following fractions have finite decimal expansions?
2 3 276937
a=—-, b=—, c= .
3 25 15625

3. Draw the following sets of real numbers. Each of these sets is the union of one or
more intervals. Find those intervals. Which of thee sets are finite?

A={z|2*-32+2<0
B={z|2°-32+2>0
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{z|2* - 32> 3}
{z|2*—5> 2z}

{t|t*—3t+2<0}

{a]a?=3a+2>0}

(0,1) U (5,7]

({1} U{2.3)) N (0.2v3)

{0 | sing =1}

R={p|cosp >0}

4. Suppose A and B are intervals. Is it always true that A N B is an interval? How
about AU B?

5. Consider the sets

C
D
€
F
S
H
Q

M={z|z>0} and N={y|y>0}.

Are these sets the same?

6. Write the numbers

r =0.3131313131..., y=0.273273273273...
and z = 0.21541541541541541 . ..

as fractions (i.e. write them as ™, specifying m and n.)

(Hint: show that 100z = = + 31. A similar trick works for y, but z is a little harder.)
1378

7. Is the number whose decimal expansion after the period consists only of nines, i.e.
x = 0.99999999999999999 . . .

an integer?

FUNCTIONS

8. The functions f and g are defined by
f(z) = 2* and g(s) = s°.

Are f and g the same functions or are they different? 1378
9. Find a formula for the function f which is defined by

y=f(z) <= 22y+y="T.

What is the domain of f7
10. Find a formula for the function f which is defined by

y=f(z) &= 2%y —y=6.

What is the domain of f?
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11. Let f be the function defined by y = f(z) <= y is the largest solution of
y? = 32 — 2xy.

Find a formula for f. What are the domain and range of f7

12. Find a formula for the function f which is defined by
y=f(z) <= 2r+22y+y*=5andy > —z.

Find the domain of f.

13. Use a calculator to compute f(1.2) in three decimals where f is the implicitly defined
function from §1.3.4. (There are (at least) two different ways of finding f(1.2))

14. (a) True or false:
for all x one has sin(arcsin J:) =x?
(b) True or false:
for all x one has arcsin (sin x) =x? 1378

15. On a graphing calculator plot the graphs of the following functions, and explain the
results. (Hint: first do the previous exercise.)

= arcsin(sinz), —27 <z <27
arcsin(z) + arccos(z), 0<z <1

: <7/2
L el </

)
)
)
k(x) = arctan ?Sx, lz] < 7/2
sin
) = arcsin(cosz), —nm<z<T7
)

= cos(arcsinz), —-1<z<1

16. Find the inverse of the function f which is given by f(z) = sinx and whose domain
is m < x < 27. Sketch the graphs of both f and f~!.

17. Find a number a such that the function f(x) = sin(z+m/4) with domain a < z < a+w
has an inverse. Give a formula for f~!(x) using the arcsine function.

18. Draw the graph of the function Az from §1.3.3.

19. A function f is given which satisfies f(2x + 3) = 22 for all real numbers z.

Compute

(a) f(0) (b) f(3) (c) f(x)

where x and y are arbitrary real numbers.

What are the range and domain of f7?

20. A function f is given which satisfies f (#1) = 2z — 12 for all real numbers z.
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Compute

(a) f(1) (b) £(0) (¢) f(x)
(d) f(2) (e) F(f(2))

where x and t are arbitrary real numbers.

What are the range and domain of f7?
21. Does there exist a function f which satisfies f(2%) = z + 1 for all real numbers x?
22. Explain how you “complete the square” in a quadratic expression like az? + bx.

23. Find the range of the following functions:

f(x)=22*+3
g(x) = —22% + 4z

h(z) = 4z + 2°
k(x) = 4sinx + sin® x

((x) =1/(1+ 2%
m(x) =1/(3 + 2z + 2?).

24. For each real number a we define a line ¢, with equation y = ax + a.
(a) Draw the lines corresponding to a = —2, —1, — 1 ,0, ;, 1,2.
(b) Does the point with coordinates (3, 2) lie on one or more of the lines ¢, (where a can
be any number, not just the five values from part (a))? If so, for which values of a does
(3,2) lie on ¢,7
(c) Which points in the plane lie on at least one of the lines ¢,7.
25. For which values of m and n does the graph of f(z) = mx 4 n intersect the graph of
g(x) = 1/z in exactly one point and also contain the point (—1,1)7

26. For which values of m and n does the graph of f(z) = ma +n not intersect the graph
of g(x) =1/x?
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Chapter 2

Derivatives

To work with derivatives you have to know what a limit is, but to motivate why we are
going to study limits let’s first look at the two classical problems that gave rise to the
notion of a derivative: the tangent to a curve, and the instantaneous velocity of a moving
object.

2.1 The tangent to a curve

Suppose you have a function y = f(x) and you draw its graph. If you want to find the
tangent to the graph of f at some given point on the graph of f, how would you do that?

Let P be the point on the graph at which want to draw the tangent. If you are making
a real paper and ink drawing you would take a ruler, make sure it goes through P and
then turn it until it doesn’t cross the graph anywhere else.

If you are using equations to describe the curve and lines, then you could pick a point
@ on the graph and construct the line through P and @ (“construct” means “find an
equation for”). This line is called a “secant,” and it is of course not the tangent that
you're looking for. But if you choose () to be very close to P then the secant will be close
to the tangent.

So this is our recipe for constructing the tangent through P: pick another point () on the
graph, find the line through P and (), and see what happens to this line as you take @)
closer and closer to P. The resulting secants will then get closer and closer to some line,
and that line is the tangent.
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secant

tangent

Figure 2.1: Constructing the tangent by letting Q — P

We’ll write this in formulas in a moment, but first let’s worry about how close ) should
be to P. We can’t set () equal to P, because then P and @ don’t determine a line (you
need two points to determine a line). If you choose @ different from P then you don’t
get the tangent, but at best something that is “close” to it. Some people have suggested
that one should take () “infinitely close” to P, but it isn’t clear what that would mean.
The concept of a limit is meant to solve this confusing problem.

2.2 An example — tangent to a parabola

To make things more concrete, suppose that the function we had was f(z) = 22, and

that the point was (1,1). The graph of f is of course a parabola.
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Figure 2.2: finding the slope of a tangent to a parabola by letting Q — P

Any line through the point P(1,1) has equation
y—1l=m(x—1)

where m is the slope of the line. So instead of finding the equation of the secant and
tangent lines we will find their slopes.

Let @ be the other point on the parabola, with coordinates (z,2?). We can “move Q
around on the graph” by changing z. Whatever = we choose, it must be different from
1, for otherwise P and () would be the same point. What we want to find out is how
the line through P and @) changes if = is changed (and in particular, if = is chosen very
close to a). Now, as one changes x one thing stays the same, namely, the secant still goes
through P. So to describe the secant we only need to know its slope. By the “rise over
run” formula, the slope of the secant line joining P and @ is

A
me:—y where Ay=2?—-1 and Az=z—1.

Az

By factoring 22 — 1 we can rewrite the formula for the slope as follows

Ay 22—-1 (z—1)(z+1)
— — = = 1. 2.1
Ar  x—-1 x—1 v (2.1)

mpq =

As x gets closer to 1, the slope mpg, being x + 1, gets closer to the value 1 +1 = 2. We
say that

the limit of the slope mpg as Q) approaches P is 2.
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In symbols,

lim mpo = 2
Q=P PQ ’

or, since () approaching P is the same as x approaching 1,

rz—1
So we find that the tangent line to the parabola y = z? at the point (1,1) has equation
y—1=2(x—1), ie.y=2x—1.

A warning: you cannot substitute x = 1 in equation (2.1) to get (2.2) even though it
looks like that’s what we did. The reason why you can’t do that is that when x = 1 the
point () coincides with the point P so “the line through P and @7 is not defined; also, if
x =1 then Az = Ay = 0 so that the rise-over-run formula for the slope gives

Axr 0

— = undefined.

MPeT Ay T 0

It is only after the algebra trick in (2.1) that setting = = 1 gives something that is well
defined. But if the intermediate steps leading to mpg = x + 1 aren’t valid for = 1 why
should the final result mean anything for x = 17

Something more complicated has happened. We did a calculation which is valid for all
x # 1, and later looked at what happens if x gets “very close to 1.” This is the concept
of a limit and we’ll study it in more detail later in this section, but first another example.

2.3 Instantaneous velocity

If you try to define “instantaneous velocity” you will again end up trying to divide zero
by zero. Here is how it goes: When you are driving in your car the speedometer tells you
how fast your are going, i.e. what your velocity is. What is this velocity? What does it
mean if the speedometer says “50mph”?

s=0 time = ¢ time =t + At

B B

W

s(t)

Figure 2.3: calculating the instantaneous velocity of a car

As = s(t + At) — s(t)

We all know what average velocity is. Namely, if it takes you two hours to cover 100
miles, then your average velocity was

distance traveled

— = 50 miles per hour.
time it took
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This is not the number the speedometer provides you — it doesn’t wait two hours, measure
how far you went and compute distance/time. If the speedometer in your car tells you
that you are driving 50mph, then that should be your velocity at the moment that you
look at your speedometer, i.e. “distance traveled over time it took” at the moment you
look at the speedometer. But during the moment you look at your speedometer no time
goes by (because a moment has no length) and you didn’t cover any distance, so your
velocity at that moment is %, i.e. undefined. Your velocity at any moment is undefined.
But then what is the speedometer telling you?

To put all this into formulas we need to introduce some notation. Let ¢ be the time (in
hours) that has passed since we got onto the road, and let s(t) be the distance we have
covered since then.

Instead of trying to find the velocity exactly at time ¢, we find a formula for the average
velocity during some (short) time interval beginning at time ¢. We’ll write At for the
length of the time interval.

At time ¢t we have traveled s(t) miles. A little later, at time t + At we have traveled
s(t+At). Therefore during the time interval from ¢ to t+At we have moved s(t+At)—s(t)
miles. Our average velocity in that time interval is therefore

s(t + At) — s(t)
At

The shorter you make the time interval, i.e. the smaller you choose At, the closer this
number should be to the instantaneous velocity at time t¢.

miles per hour.

So we have the following formula (definition, really) for the velocity at time ¢

o(t) = Tim s(t + At) — s(t)‘

At—0 At (23)

The viewing of Yuf® by 3BluelBrown is recommended to reinforce these ideas.

2.4 Rates of change

The two previous examples have much in common. If we ignore all the details about
geometry, graphs, highways and motion, the following happened in both examples:

We had a function y = f(z), and we wanted to know how much f(z) changes if x changes.
If you change x to z + Ax, then y will change from f(x) to f(z + Ax). The change in y
is therefore

Ay = f(z + Azx) = f(x),

and the average rate of change is

Ay f(z+ Azx) — f(z)
= v . (2.4)

This is the average rate of change of f over the interval from = to x + Ax. To define the
rate of change of the function f at x we let the length Az of the interval become
smaller and smaller, in the hope that the average rate of change over the shorter and
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shorter time intervals will get closer and closer to some number. If that happens then
that “limiting number” is called the rate of change of f at z, or, the derivative of f at

x. It is written as i Ax) — f(2)
r+ Ar) — f(x
"(z) = li )
f(z) As 50 Ax
Derivatives and what you can do with them are what the calculus is all about. To see
further how tangent lines and derivatives are linked consider watching this Youl® 1y
Socratica .

(2.5)

The description we just went through shows that to understand what a derivative is you
need to know what a limit is. In the next chapter we’ll study limits so that we get a less
vague understanding of formulas like (2.5).

2.5 Examples of rates of change

2.5.1 Acceleration as the rate at which velocity changes.

As you are driving in your car your velocity does not stay constant, it changes with time.
Suppose v(t) is your velocity at time ¢ (measured in miles per hour). You could try to
figure out how fast your velocity is changing by measuring it at one moment in time
(you get v(t)), then measuring it a little later (you get v(At))). You conclude that your
velocity increased by Av = v(t+ At) —v(t) during a time interval of length A¢, and hence

average rate at which | _ Av _ v(t + At) —v(t)
your velocity changed [ Ar At '

This rate of change is called your average acceleration (over the time interval from ¢ to
t+At). Your instantaneous acceleration at time t is the limit of your average acceleration
as you make the time interval shorter and shorter:

t+ At) —v(t
{acceleration at time t} = a = lim ult + &) = v )
At—0 At

th the average and instantaneous accelerations are measured in “miles per hour per hour,”
ie. in

(mi/h)/h = mi/h?.
Or, if you had measured distances in meters and time in seconds then velocities would be

measured in meters per second, and acceleration in meters per second per second, which
is the same as meters per second?, i.e. “meters per squared second.”

2.5.2 Reaction rates.

Think of a chemical reaction in which two substances A and B react to form AB, according
to the reaction

If the reaction is taking place in a closed reactor, then the “amounts” of A and B will
be decreasing, while the amount of ABy will increase. Chemists write [A] for the amount
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of “A” in the chemical reactor (measured in moles). Clearly [A] changes with time so
it defines a function. We're mathematicians so we will write “[A](¢)” for the number of
moles of A present at time t¢.

To describe how fast the amount of A is changing we consider the derivative of [A] with
respect to time, i.e. AL+ A — (A
/ . t+ At) — t
A=A
This quantity is the rate of change of [A]. The notation “[A](¢)” is really only used by
calculus professors. If you open a paper on chemistry you will find that the derivative is
written in LEIBNIZ notation:

d[A]
dt
More on this in §4.1.2

How fast does the reaction take place? If you add more A or more B to the reactor then
you would expect that the reaction would go faster, i.e. that more AB, is being produced
per second. The law of mass-action kinetics from chemistry states this more precisely.
For our particular reaction it would say that the rate at which A is consumed is given by

d[A]

dt
in which the constant k is called the reaction constant. It’s a constant that you could
try to measure by timing how fast the reaction goes.

= k[A] B,

Before attempting this sections problems the reader should consider viewing Youl® by
AFmath .

2.6 PROBLEMS

RATES OF CHANGE

27. Repeat the reasoning in §2.2 to find the slope at the point (%, i), or more generally
at any point (a,a?) on the parabola with equation y = 2.

28. Repeat the reasoning in §2.2 to find the slope at the point (%, %), or more generally

at any point (a,a®) on the curve with equation y = 3.

29.
Should you trust your calculator?

Find the slope of the tangent to the parabola y = 22 at the point (%, é) (You have already
done this: see exercise 27).

Instead of doing the algebra you could try to compute the slope by using a calculator.
This exercise is about how you do that and what happens if you try (too hard).

Compute ﬁ—z for various values of Axz:
Az =0.1,0.01,0.001,107%, 1072

As you choose Az smaller your computed ﬁ—g ought to get closer to the actual slope. Use
at least 10 decimals and organize your results in a table like this:
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Az | f(a) fla+Az) Ay Ay/Ax
0.01
0.001
1076
107"

Look carefully at the ratios Ay/Az. Do they look like they are converging to some
number? Compare the values of ﬁ—z with the true value you got in the beginning of this
problem.

30. Simplify the algebraic expressions you get when you compute Ay and Ay/Ax for the
following functions

(a) y =221 +1

+379

31. Suppose that some quantity y is a function of some other quantity x, and suppose
that y is a mass, i.e. y is measured in pounds, and z is a length, measured in feet. What
units do the increments Ay and Az, and the derivative dy/dz have? 1379

32. A tank is filling with water. The volume (in gallons) of water in the tank at time ¢
(seconds) is V/(t). What units does the derivative V’(t) have? 1379

33. Let A(x) be the area of an equilateral triangle whose sides measure x inches.
(a) Show that 42 has the units of a length.

(b) Which length does % represent geometrically? [Hint: draw two equilateral triangles,
one with side x and another with side x + Ax. Arrange the triangles so that they both
have the origin as their lower left hand corner, and so there base is on the x-axis.] 1379

34. Let A(x) be the area of a square with side z, and let L(z) be the perimeter of the
square (sum of the lengths of all its sides). Using the familiar formulas for A(z) and L(x)
show that A'(z) = $L(x).

Give a geometric interpretation that explains why AA ~ $L(z)Ax for small Az.

35. Let A(r) be the area enclosed by a circle of radius r, and let L(r) be the length of the
circle. Show that A’(r) = L(r). (Use the familiar formulas from geometry for the area
and perimeter of a circle.)

36. Let V (r) be the volume enclosed by a sphere of radius r, and let S(r) be the its surface

area. Show that V'(r) = S(r). (Use the formulas V(r) = 37r® and S(r) = 4mr?.) ( To

understand where S(r) = 4772 comes from consider watching YWT® by 3BluelBrown . )
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Chapter 3

Limits and Continuous Functions

3.1 Informal definition of limits

While it is easy to define precisely in a few words what a square root is (y/a is the positive
number whose square is @) the definition of the limit of a function runs over several terse
lines, and most people don’t find it very enlightening when they first see it. (See §3.2.)
So we postpone this for a while and fine tune our intuition for another page.

3.1.1 Definition of the limit (1st attempt).

If f is some function then
lim f(x) =L

Tr—ra

is read “the limit of f(z) as x approaches a is L.” It means that if you choose values of
x which are close but not equal to a, then f(z) will be close to the value L; moreover,
f(z) gets closer and closer to L as x gets closer and closer to a.

The following alternative notation is sometimes used
flx) = L as z— a;

(read “f(x) approaches L as z approaches a” or “f(x) goes to L is = goes to a”.)

3.1.2 Example.

If f(z) =2+ 3 then
lim f(z) =7,

r—4

is true, because if you substitute numbers x close to 4 in f(z) = x 4+ 3 the result will be
close to 7.
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3.1.3 Example: substituting numbers to guess a limit.

What (if anything) is
% — 21

lim ?
r—2 [L‘2 — 4

Here f(z) = (2* — 22)/(2* — 4) and a = 2.
We first try to substitute x = 2, but this leads to

22-2.2 0

TO="5"7 =5

which does not exist. Next we try to substitute values of x close but not equal to 2.
Table 3.1 suggests that f(x) approaches 0.5.

3.000000 | 0.600000 1.000000 | 1.009990
2.500000 | 0.555556 0.500000 | 1.009980
2.100000 | 0.512195 0.100000 | 1.009899
2.010000 | 0.501247 0.010000 | 1.008991
2.001000 | 0.500125 0.001000 | 1.000000

Table 3.1: Finding limits by substituting values of x “close to a.” (Values of f(x) and g(x) rounded
to six decimals.)

3.1.4 Example: Substituting numbers can suggest the wrong
answer.

The previous example shows that our first definition of “limit” is not very precise, because
it says “x close to a,” but how close is close enough? Suppose we had taken the function

101 000z

9%) = 100000 + 1

and we had asked for the limit lim, o g(z).

Then substitution of some “small values of 2”7 could lead us to believe that the limit is
1.000.... Only when you substitute even smaller values do you find that the limit is 0
(zero)!

See also problem 29.

3.2 The formal, authoritative, definition of limit

The informal description of the limit uses phrases like “closer and closer” and “really very
small.” In the end we don’t really know what they mean, although they are suggestive.
“Fortunately” there is a good definition, i.e. one which is unambiguous and can be used
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to settle any dispute about the question of whether lim,_,, f(z) equals some number L or
not. Here is the definition. It takes a while to digest, so read it once, look at the examples,
do a few exercises, read the definition again. Go on to the next sections. Throughout
this text the student is urged to come back to this section and read it again.

Definition 3.2.1. Definition of lim,_,, f(x) = L.
We say that L is the limit of f(z) as z — a, if

1. f(z) need not be defined at x = a, but it must be defined for all other z in some
interval which contains a.

2. for every € > 0 one can find a § > 0 such that for all z in the domain of f one has

|z —a| < 0 implies |f(z) — L| < e. (3.1)

3.2.1 Why the absolute values?

The quantity |z — y| is the distance between the points z and y on the number line, and
one can measure how close x is to y by calculating |z — y|. The inequality |z —y| < ¢
says that “the distance between x and y is less than §,” or that “z and y are closer than

5.7

3.2.2 What are ¢ and §?

The quantity ¢ is how close you would like f(x) to be to its limit L; the quantity ¢ is
how close you have to choose z to a to achieve this. To prove that lim,_,, f(z) = L you

must assume that someone has given you an unknown € > 0, and then find a postive ¢
for which (3.1) holds. The ¢ you find will depend on ¢.

AN y — f(‘r)
L e e
I How close must = be to a
for f(x) to be in this range?
L—e NS

W

* For some « between a — § and a + &,

. f(z) is not between L — € and L + e.

! The § in this picture is too big for the e.
You need a smaller 6.
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LIf you choose z in this interval then
: f(z) will be between L — ¢ and L + e.
: The § is now small enough for e.

W

SIS
I +
S >

3.2.3 examples

3.2.3.1 Show that lim, .52z +1=11.

We have f(z) =2zx+1,a=5and L = 11, and the question we must answer is “how close
should = be to 5 if want to be sure that f(z) = 2z + 1 differs less than ¢ from L = 1177

To figure this out we try to get an idea of how big |f(z) — L| is:
f(x) = LI =|2z+1)— 11| =22 - 10| =2 |z — 5| =2 |z —al.
So, if 2|z — a| < € then we have |f(z) — L| < ¢, i.e.
if |z — a| < e then |f(z) — L| <e.

We can therefore choose § = %5. No matter what € > 0 we are given our § will also be
positive, and if |x — 5| < § then we can guarantee |(2z + 1) — 11| < . That shows that
lim, 52z +1=11.

3.2.3.2 Show that lim, ,;z° =1

We have f(z) = 2% a =1, L = 1, and again the question is, “how small should |z — 1|
be to guarantee |z% — 1| < £?”

We begin by estimating the difference |22 — 1|
22 =1 =|(z -z +1)| =]z + 1] |z —1].

As z approaches 1 the factor |z — 1| becomes small, and if the other factor |z + 1| were a
constant (e.g. 2 as in the previous example) then we could find § as before, by dividing
€ by that constant.

Here is a trick that allows you to replace the factor |z + 1| with a constant. We hereby
agree that we always choose our § so that 6 < 1. If we do that, then we will always have

lz—1] <d<lie |[z—1] <1,
and x will always be beween 0 and 2. Therefore

22 = 1| = |z + 1] |z — 1| < 3|z — 1.
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If we now want to be sure that |#? — 1| < ¢, then this calculation shows that we should
require 3|z — 1| < ¢, i.e. [z — 1| < 3¢. So we should choose § < ze. We must also live up
to our promise never to choose d > 1, so if we are handed an ¢ for which %5 > 1, then we
choose § = 1 instead of § = %5. To summarize, we are going to choose

1
60 = the smaller of 1 and gg.

We have shown that if you choose ¢ this way, then |z — 1| < § implies |2 — 1| < &, no
matter what ¢ > 0 is.

The expression “the smaller of a and b” shows up often, and is abbreviated to min(a, b).
We could therefore say that in this problem we will choose § to be

0= min(l, %5).
To get a better understanding of this process consider viewing this (M Tube) by rootmath .

3.2.3.3 Show that lim, ,41/x = 1/4.

Solution: We apply the definition with a = 4, L = 1/4 and f(x) = 1/z. Thus, for any
e > 0 we try to show that if |x — 4| is small enough then one has |f(z) — 1/4| < e.

We begin by estimating |f(z) — | in terms of |z — 4:

et 1
N |4x| _|4:c|

|f(x) = 1/4] = |z — 4].

r 4 4x

1 1‘_'4—3:

As before, things would be easier if 1/|4xz| were a constant. To achieve that we again
agree not to take o > 1. If we always have 6 < 1, then we will always have |z —4| < 1, and
hence 3 < x < 5. How large can 1/|4z| be in this situation? Answer: the quantity 1/|4x|
increases as you decrease x, so if 3 < 2 < 5 then it will never be larger than 1/]4-3| = 5.

We see that if we never choose § > 1, we will always have
|f(z) — 1| < Sle—4] for |z—4] <é.
To guarantee that |f(z) — 1| < & we could threfore require
Llz—4] <e, ie |z—4]<12e.

Hence if we choose 6 = 12¢ or any smaller number, then |x —4| < § implies | f(x) —4] < €.
Of course we have to honor our agreement never to choose > 1, so our choice of 9§ is

0 = the smaller of 1 and 12¢ = min(l, 125).

3.3 Variations on the limit theme

Not all limits are “for x — a.” here we describe some possible variations on the concept
of limit.
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3.3.1 Left and right limits.

When we let “x approach a” we allow x to be both larger or smaller than a, as long as
x gets close to a. If we explicitly want to study the behaviour of f(z) as = approaches a
through values larger than a, then we write

h{‘nf(a:) or lim f(z)or lim f(x)or lm f(x).

r—a+ z—a+0 r—a,r>a

All four notations are in use. Similarly, to designate the value which f(x) approaches as
x approaches a through values below a one writes

li;n f(z)or lim f(z)or lim f(x)or lim f(z).

r—a— z—a—0 r—a,x<a
The precise definition of right limits goes like this:

Definition 3.3.1. right and left limits
Let f be a function. Then the right-limit

lim f(z) = L. (3.2)

means that for every € > 0 one can find a § > 0 such that
a<r<a+d = |f(x)-Ll<e

holds for all x in the domain of f.

The left-limit, i.e. the one-sided limit in which x approaches a through values less than
a is defined in a similar way.

The following theorem tells you how to use one-sided limits to decide if a function f(x)
has a limit at z = a.

Theorem 3.3.1. If both one-sided limits

lim f(z) = L., and lim f(z) = L_
lin f(2) = Ly, and lim f(2)
exist, then

lim f(x) exists <= L, =L_.

T—ra

In other words, if a function has both left- and right-limits at some x = a, then that
function has a limit at x = a if the left- and right-limits are equal.

3.3.2 Limits at infinity.

Instead of letting x approach some finite number, one can let x become “larger and larger”
and ask what happens to f(x). If there is a number L such that f(x) gets arbitrarily
close to L if one chooses x sufficiently large, then we write

lim f(x)=L, or limf(x)=L, or lim f(x)=L.

T—00 xToo x /'o0

(“The limit for x going to infinity is L.”)
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3.3.3 Example — Limit of 1/z .

The larger you choose z, the smaller its reciprocal 1/x becomes. Therefore, it seems
reasonable to say

Here is the precise definition:

3.3.4 Definition of limit at oo.

Let f be some function which is defined on some interval xy < x < oo. If there is a
number L such that for every € > 0 one can find an A such that

r>A = |f(x)-Ll<c¢e

for all z, then we say that the limit of f(x) for x — oo is L.

The definition is very similar to the original definition of the limit. Instead of & which
specifies how close x should be to a, we now have a number A which says how large x
should be, which is a way of saying “how close = should be to infinity.”

3.3.5 Example — Limit of 1/z (again) .

To prove that lim,_,., 1/ = 0 we apply the definition to f(z) = 1/z, L = 0.
For given € > 0 we need to show that
1

——L‘<5forall:c>A (3.3)
T

provided we choose the right A.

How do we choose A? A is not allowed to depend on z, but it may depend on ¢.

If we assume for now that we will only consider positive values of x, then (3.3) simplifies
to

1
—<e€
T

which is equivalent to

1
T > —.
€

This tells us how to choose A. Given any positive €, we will simply choose
1
A=-
€

Then one has |2 — 0] = 2 < ¢ for all z > A. Hence we have proved that lim,_, 1/2 = 0.
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3.4 Properties of the Limit

The precise definition of the limit is not easy to use, and fortunately we won’t use it very
often in this class. Instead, there are a number of properties that limits have which allow
you to compute them without having to resort to “epsiloncy.”

The following properties also apply to the variations on the limit from 3.3. IL.e. the
following statements remain true if one replaces each limit by a one-sided limit, or a limit
for r — oo.

Limits of constants and of x. If a and ¢ are constants, then

lime=c¢c (P1)
r—ra

and
lim z = a. (Py)
r—a

Limits of sums, products and quotients. Let F} and F, be two given functions
whose limits for x — a we know,

lim Fl(.l’) = Ll, lim FQ(JI) = Lg.

T—a T—a
Then
lim (Fy(o) + Fa(o) = L + Lo (P
lim (Fy(z) — Fy(x)) = Ly — Lo, (Fy)
lim (Fy(2) - Fy(x)) = Li - Lo (Ps)
Finally, if lim,_,, F5(x) # 0,
Jim £17) _ L (Ps)

i—a Fy(z) Lo’

In other words the limit of the sum is the sum of the limits, etc. One can prove these
laws using the definition of limit in §3.2 but we will not do this here. However, I hope
these laws seem like common sense: if, for x close to a, the quantity F(z) is close to L;
and Fy(x) is close to Ly, then certainly F(x) + Fy(z) should be close to L; + Lo.

There are two more properties of limits which we will add to this list later on. They are
the “Sandwich Theorem” (§3.8) and the substitution theorem (§3.9).

3.5 Examples of limit computations

3.5.1 Find lim,_, 2°.

One has
limz? =limz -z
r—2 r—2
= (o) - (i) by (%)
=2.2=4.
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Similarly,

lim 22 = lim z - 22

T—2 T—2
— (3161_% x) . (:161_{% xQ) (Ps) again
=2-4=28,

and, by (Py)

limz?—1=1limz?—liml=4—1=3,
z—2 r—2 r—2

and, by (P,) again,

limz®—1=1limz®—liml=8—1=7,
xr—2 r—2 x—2

Putting all this together, one gets
#1281 81 7

li _ _ _ 7
221 2-1 4-1 3

because of (Fg). To apply (FPs) we must check that the denominator (“Ly”) is not zero.
Since the denominator is 3 everything is OK, and we were allowed to use (Fs).

3.5.2 Try the examples 3.1.3 and 3.1.4 using the limit proper-
ties.

To compute lim, ,»(z? — 2z)/(z* — 4) we first use the limit properties to find

limz? — 22z =0 and limz? — 4 = 0.

T—2 T—2
to complete the computation we would like to apply the last property (Ps) about quo-
tients, but this would give us

lim f(z) = 9

r—2 0

The denominator is zero, so we were not allowed to use (Ps) (and the result doesn’t mean
anything anyway). We have to do something else.

The function we are dealing with is a rational function, which means that it is the
quotient of two polynomials. For such functions there is an algebra trick which always
allows you to compute the limit even if you first get %. The thing to do is to divide
numerator and denominator by x — 2. In our case we have

v —2r=(z—2)z, ?—4=(x—-2) (x+2)

so that 5
lim f(z) = lim (z=2)-@ = lim ——.

After this simplification we can use the properties (P_) to compute

:lcl—%f(x):2+2:§'
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3.5.3 Example — Find lim, ,o+/x .

Of course, you would think that lim,_, v/Z = v/2 and you can indeed prove this using §
& € (See problem 43.) But is there an easier way? There is nothing in the limit properties
which tells us how to deal with a square root, and using them we can’t even prove that
there is a limit. However, if you assume that the limit exists then the limit properties
allow us to find this limit.

The argument goes like this: suppose that there is a number L with

lim vz = L.

r—2

Then property (Ps) implies that
L? = (lim\/f) . (lim\/f) = lim vz -7 =limz = 2.
T—2 T—2 T—2 T—2

In other words, L? = 2, and hence L must be either V2 or —/2. We can reject the latter
because whatever = does, its squareroot is always a positive number, and hence it can
never “get close to” a negative number like —v/2.

Our conclusion: if the limit exists, then
lim vz = V2.
T—2

The result is not surprising: if = gets close to 2 then /z gets close to v/2.

3.5.4 Example — The derivative of \/x at x = 2.

Find
— V2
lim Y2 = V2
r—2 xr — 2
assuming the result from the previous example.

Solution: The function is a fraction whose numerator and denominator vanish when
x = 2, i.e. the limit is of the form %. We use the same algebra trick as before, namely we
factor numerator and denominator:

V=2 VI =2 1

=2 T (Vi VI(WEHVE)  VE+ VR

Now one can use the limit properties to compute

lim\/_;ﬁ:hm 1 — 1 —
=2 =2 w2 T4+/2 22

I8
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3.5.5 Limit as x — oo of rational functions.

A rational function is the quotient of two polynomials, so

anx™ + -+ a1+ ag

R(x) = .

(3.4)

We have seen that

lim — =0
T—00 I

We even proved this in example 3.3.5. Using this you can find the limit at co for any
rational function R(z) as in (3.4). One could turn the outcome of the calculation of
lim, o R(x) into a recipe/formula involving the degrees n and m of the numerator and
denominator, and also their coefficients a;, b;, which students would then memorize, but
it is better to remember “the trick.”
To find lim, - R(x) divide numerator and denominator by =™ (the highest power of x
occurring in the denominator).
For example, let’s compute
) 3% +3
lim ——————.
z—o00 bx? + Tx — 39
Remember the trick and divide top and bottom by z?, and you get
. 3z* +3 . 3+ 3/z?
lim ——————= = lim
v—o00 5x? +Tx — 39  w—oo 5+ 7/x — 39 /22
B lim, o 3 + 3/22
 limgyee b+ 7/z — 39/ 22
3

5

Here we have used the limit properties (P,) to break the limit down into little pieces like
lim, o 39/2% which we can compute as follows

1\? 1\?
lim 39/22 = lim 39 - (—) - (lim 39) : (lim —) =39-0%=0.
s

T—00 T—00 T—r00 rT—00 U

3.5.6 Another example with a rational function .

Compute
. T
lim .
z—oo 3 + 5

We apply “the trick” again and divide numerator and denominator by x3. This leads to

) . 1/x? lim, o 1/22 0
lim —— = lim = = =-=0.
esoo g3+ 5 a—oo 14+ 5/23  lim, oo 14+ 5/23 1

To show all possible ways a limit of a rational function can turn out we should do yet
another example, but that one belongs in the next section (see example 3.6.6.)
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3.6 When limits fail to exist

In the last couple of examples we worried about the possibility that a limit lim,_,, g(x)
actually might not exist. This can actually happen, and in this section we’ll see a few
examples of what failed limits look like. First let’s agree on what we will call a “failed
limit.”

3.6.1 Definition.
If there is no number L such that lim,_,, f(x) = L, then we say that the limit lim,_,, f(z)
does not exist.
3.6.2 The sign function near r =0 .
The “sign function!” is defined by
-1 forz<O

sign(z) =¢0 forx=0
1 forxz>0

Y
16
.y = sign(x)
- > T
6—1

Figure 3.1: The sign function.

Note that “the sign of zero” is defined to be zero. But does the sign function have a limit
at x = 0, i.e. does lim,_,osign(z) exist? And is it also zero? The answers are no and no,
and here is why: suppose that for some number L one had

ilg(l) sign(z) = L,

then since for arbitrary small positive values of = one has sign(z) = 41 one would think
that L = 4+1. But for arbitrarily small negative values of x one has sign(z) = —1, so one

1Some people don’t like the notation sign(z), and prefer to write

instead of g(x) = sign(z). If you think about this formula for a moment you’ll see that sign(x) = /||
for all x # 0. When = = 0 the quotient x/|z| is of course not defined.
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would conclude that L = —1. But one number L can’t be both +1 and —1 at the same
time, so there is no such L, i.e. there is no limit.

lim sign(z) does not exist.
z—0

In this example the one-sided limits do exist, namely,

lim si =1 and lim si =—1.

lim sign(z) and lim sign(z)
All this says is that when x approaches 0 through positive values, its sign approaches +1,
while if z goes to 0 through negative values, then its sign approaches —1.

3.6.3 The example of the backward sine.

Contemplate the limit as x — 0 of the “backward sine,” i.e.

. . T

glg% sin (E) .
When z = 0 the function f(z) = sin(7/z) is not defined, because its definition involves
division by x. What happens to f(z) as x — 0?7 First, 7/x becomes larger and larger
(“goes to infinity”) as x — 0. Then, taking the sine, we see that sin(r/z) oscillates
between +1 and —1 infinitely often as # — 0. This means that f(z) gets close to any
number between —1 and +1 as x — 0, but that the function f(x) never stays close to
any particular value because it keeps oscillating up and down.

Figure 3.2: Graph of y =sin 7 for =3 <z <3, z #0.

Here again, the limit lim,_,o f(z) does not exist. We have arrived at this conclusion by
only considering what f(x) does for small positive values of z. So the limit fails to exist
in a stronger way than in the example of the sign-function. There, even though the limit
didn’t exist, the one-sided limits existed. In the present example we see that even the
one-sided limit

. . T

lim sin —

2\ 0 €T

does not exist.
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3.6.4 Trying to divide by zero using a limit.

The expression 1/0 is not defined, but what about

lim -7
x—0

This limit also does not exist. Here are two reasons:

It is common wisdom that if you divide by a small number you get a large number, so
as  \, 0 the quotient 1/z will not be able to stay close to any particular finite number,
and the limit can’t exist.

“Common wisdom” is not always a reliable tool in mathematical proofs, so here is a
better argument. The limit can’t exist, because that would contradict the limit properties
(Py)- - (Fs). Namely, suppose that there were an number L such that

1
lim — = L.

z—0

Then the limit property (Ps) would imply that

o1 .1 .

i (@) = (limg ) - (fimx) = L-0=0.
On the other hand i -x = 1 so the above limit should be 1! A number can’t be both
0 and 1 at the same time, so we have a contradiction. The assumption that lim, ,o 1/
exists is to blame, so it must go.

3.6.5 Using limit properties to show a limit does not exist.

The limit properties tell us how to prove that certain limits exist (and how to compute
them). Although it is perhaps not so obvious at first sight, they also allow you to prove
that certain limits do not exist. The previous example shows one instance of such use.
Here is another.

Property (Ps) says that if both lim,_,, g(x) and lim,_,, h(z) exist then lim,_,, g(z)+h(x)
also must exist. You can turn this around and say that if lim,_,, g(z) + h(x) does not
exist then either lim, ., g(x) or lim,_,, h(z) does not exist (or both limits fail to exist).

For instance, the limit

lim — — z
z—0
can’t exist, for if it did, then the limit
.1 . o1 .
lim — = llm(— — :E—I—m) = hm(— —x) + lim
x—0 z—0 x—0 x—0

would also have to exist, and we know lim,_.q % doesn’t exist.
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3.6.6 Limits at oo which don’t exist.

If you let z go to oo, then x will not get “closer and closer” to any particular number L,
so it seems reasonable to guess that

lim « does not exist.
r—r00

One can prove this from the limit definition (and see exercise 70).

Let’s consider )
¢+ 2r —1
L=lim 212020
Once again we divide numerator and denominator by the highest power in the denomi-
nator (i.e. x)

o_1
I — thL’—l——x

Here the denominator has a limit ('tis 1), but the numerator does not, for if lim, ., x +

2 — L existed then, since lim, (2 — 1/2) = 2 exists,

. L _l B _l
lim z = lim (1‘—|—2 ) (2 x)

T—00 T—00 €T

would also have to exist, and lim,_,., x doesn’t exist.

So we see that L is the limit of a fraction in which the denominator has a limit, but the
numerator does not. In this situation the limit L itself can never exist. If it did, then

would also have to have a limit.

3.7 What’s in a name?

There is a big difference between the variables z and a in the formula

lim 22 + 1,

r—ra

namely a is a free wvariable, while x is a dummy variable (or “placeholder” or a
“bound variable.”)

The difference between these two kinds of variables is this:

e if you replace a dummy variable in some formula consistently by some other variable
then the value of the formula does not change. On the other hand, it never makes
sense to substitute a number for a dummy variable.

e the value of the formula may depend on the value of the free variable.
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To understand what this means consider the example lim, ., 2z + 1 again. The limit is
easy to compute:
lim 2z +1 = 2a + 1.

Tr—a

If we replace x by, say u (systematically) then we get

lim 2u + 1

u—a

which is again equal to 2a + 1. This computation says that if some number gets close to
a then two times that number plus one gets close to 2a + 1. This is a very wordy way of
expressing the formula, and you can shorten things by giving a name (like  or u) to the
number which approaches a. But the result of our computation shouldn’t depend on the
name we choose, i.e. it doesn’t matter if we call it x or wu.

Since the name of the variable x doesn’t matter it is called a dummy variable. Some
prefer to call z a bound variable, meaning that in

lim 22 + 1

T—ra

the z in the expression 2x + 1 is bound to the x written underneath the limit — you can’t
change one without changing the other.

Substituting a number for a dummy variable usually leads to complete nonsense. For
instance, let’s try setting = 3 in our limit, i.e. what is

lim2-3+17

3—a
Of course 2-3+ 1 =7, but what does 7 do when 3 gets closer and closer to the number
a? That’s a silly question, because 3 is a constant and it doesn’t “get closer” to some
other number like a! If you ever see 3 get closer to another number then it’s time to take
a vacation.

On the other hand the variable a is free: you can assign it particular values, and its value
will affect the value of the limit. For instance, if we set a = 3 (but leave z alone) then
we get

lim 2z + 1

z—3
and there’s nothing strange about that (the limit is 2-34 1 = 7, no problem.) You could

substitute other values of a and you would get a different answer. In general you get
2a + 1.

3.8 Limits and Inequalities

This section has two theorems which let you compare limits of different functions. The
properties in these theorems are not formulas that allow you to compute limits like the
properties (P;)...(Fs) from §3.4. Instead, they allow you to reason about limits, i.e.
they let you say that this or that limit is positive, or that it must be the same as some
other limit which you find easier to think about.

The first theorem should not surprise you — all it says is that bigger functions have bigger
limits.
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Theorem 3.8.1. Let f and g be functions whose limits for z — a exist, and assume that
f(z) < g(x) holds for all x. Then

lim f(x) < lim g(z).

r—a Tr—a
A useful special case arises when you set f(x) = 0. The theorem then says that if a
function g never has negative values, then its limit will also never be negative.

The statement may seem obvious, but it still needs a proof, starting from the -9 definition
of limit. This will be done in lecture.

Here is the second theorem about limits and inequalities.

Theorem 3.8.2. The Sandwich Theorem.
Suppose that

f(z) < g(x) < h(z)
(for all x) and that

lim f(z) = lim A(x).

r—a T—ra

Then

li =1 = lim h(x).

lim f(z) = lim g(z) = lim h(z)
The theorem is useful when you want to know the limit of g, and when you can sandwich
it between two functions f and h whose limits are easier to compute. The Sandwich
Theorem looks like the first theorem of this section, but there is an important difference:
in the Sandwich Theorem you don’t have to assume that the limit of g exists. The
inequalities f < g < h combined with the circumstance that f and h have the same limit
are enough to guarantee that the limit of g exists.

zsy '..‘ y - |{L’|

N"Mf\ .

\/ = T
’.’y—I'COS:C

Ty = —|x|

Figure 3.3: Graphs of |z|, —|z| and 2 cos T for —1.2 <z < 1.2

3.8.1 Example: a Backward Cosine Sandwich.

The Sandwich Theorem says that if the function g(x) is sandwiched between two functions
f(z) and h(z) and the limits of the outside functions f and h exist and are equal, then
the limit of the inside function ¢ exists and equals this common value. For example

1
—lz| <z cos — < |z
x
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since the cosine is always between —1 and 1. Since

lim —|z| = lim |z| =0
z—0 z—0

the sandwich theorem tells us that

lim x cos — = 0.
x—0 x

Note that the limit lim, o cos(1/x) does mot exist, for the same reason that the “back-
ward sine” did not have a limit for x — 0 (see example 3.6.3). Multiplying with x changed
that.

3.9 Continuity

3.9.1 Definition.

A function g is continuous at a if

lim g(z) = g(a) (3.5)

T—a

A function is continuous if it is continuous at every a in its domain.

Note that when we say that a function is continuous on some interval it is understood that
the domain of the function includes that interval. For example, the function f(z) = 1/z?
is continuous on the interval 1 < x < 5 but is not continuous on the interval —1 <z < 1.

3.9.2 Polynomials are continuous.

For instance, let us show that P(x) = z* + 3z is continuous at z = 2. To show that you

have to prove that
lim P(z) = P(2),

x—2
i.e.
lima? +3x=22+3-2.
x—2

You can do this two ways: using the definition with € and § (i.e. the hard way), or using
the limit properties (P)...(Fs) from §3.4 (just as good, and easier, even though it still
takes a few lines to write it out — do both!)
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3.9.3 Rational functions are continuous.

Let R(z) = % be a rational function, and let a be any number in the domain of R, i.e.

any number for which Q(a) # 0. Then one has

im = lim Plz)
fim B(z) = m =)

_ limg e P(2)
- limg, Q(2)
_ P(a)

0
= R(a).

property (Fs)

P and ) are continuous

This shows that R is indeed continuous at a.

3.9.4 Some discontinuous functions.

If lim, ., g(x) does not exist, then it certainly cannot be equal to g(a), and therefore any
failed limit provides an example of a discontinuous function.

For instance, the sign function g(x) = sign(z) from example 3.1 is not continuous at
r=0.

Is the backward sine function g(z) = sin(1/x) from example 3.2 also discontinuous at
x = 07 No, it is not, for two reasons: first, the limit lim, ,osin(1/x) does not exist, and
second, we haven’t even defined the function g(x) at = = 0, so even if the limit existed,
we would have no value g(0) to compare it with.

3.9.5 How to make functions discontinuous.

Here is a discontinuous function:
x?  if x # 3,
flz) = .
47 if z = 3.

In other words, we take a continuous function like g(z) = 22, and change its value

somewhere, e.g. at x = 3. Then
lim £ () = 9 # 47 = f(3).
The reason that the limit is 9 is that our new function f(z) coincides with our old

continuous function g(x) for all x except x = 3. Therefore the limit of f(z) as x — 3 is
the same as the limit of g(x) as x — 3, and since ¢ is continuous this is g(3) = 9.
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3.9.6 Sandwich in a bow tie.

We return to the function from example 3.3. Consider

{:L’ oS (%) for x #£ 0,

J(x) = 0 forx =0

Then f is continuous at z = 0 by the Sandwich Theorem (see Example 3.3).

If we change the definition of f by picking a different value at x = 0 the new function will
not be continuous, since changing f at x = 0 does not change the limit lim,_,o f(z). Since
this limit is zero, f(0) = 0 is the only possible choice of f(0) which makes f continuous
at z = 0.

3.10 Swubstitution in Limits

Given two functions f and g one can consider their composition h(x) = f(g(x)). To
compute the limit

lim f(g(a:))

Tr—a

we write u = g(x), so that we want to know

lim f(u) where u = g(z).

r—a

Suppose that you can find the limits

L = lim g(z) and lim f(u) = M.
u— L

T—a

Then it seems reasonable that as x approaches a, u = g(z) will approach L, and f(g(z))
approaches M.

This is in fact a theorem:

Theorem 3.10.1. If lim, ,, g(x) = L, and if the function f is continuous at u = L, then

lim f(g(x)) = lim f(u) = (L),

r—a

Another way to write this is

lim f(g(x)) = f(lim g(x)).

T—a Tr—a

3.10.1 Example: compute lim, 323 — 322 + 2.

The given function is the composition of two functions, namely

Va3 — 322 + 2 = u, with u=2* — 322 + 2,
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or, in function notation, we want to find lim,_,3 h(z) where
h(z) = f(g9(z)), with g(z) = 2° — 32® + 2 and g(x) = /7.
Either way, we have
%ﬁ—z&xuz:z and 11312\/‘: V2.

You get the first limit from the limit properties (Py)...(Ps). The second limit says that
taking the square root is a continuous function, which it is. We have not proved that
(yet), but this particular limit is the one from example 3.5.3. Putting these two limits
together we conclude that the limit is v/2.

Normally, you write this whole argument as follows:
lim v a3 — 322 + :\/limm3—3x2—|—2:\/§,
z—3 z—3

where you must point out that f(z) = y/z is a continuous function to justify the first
step.

Another possible way of writing this is

lim Va3 — 322 +2 = lin‘é\/ﬂ: V2,
u—>

z—3

where you must say that you have substituted u = 2% — 322 + 2.

3.11 Two Limits in Trigonometry

In this section we’ll derive a few limits involving the trigonometric functions. You can
think of them as saying that for small angles 6 one has

sinf~0 and cosf~1— 16
We will use these limits when we compute the derivatives of Sine, Cosine and Tangent.
sin

Theorem 3.11.1. lim — = 1.
60 0

Proof. The proof requires a few sandwiches and some geometry on the unit circle.

B

tan 6

Figure 3.4: The sandwitch: sinf < 6 < tanf
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We begin by considering figure 3.5 with OA =OC =1 and 0 < 0 < 7/2.

Since the wedge OAC' contains the triangle OAC' its area must be larger. The area of
the wedge is %6’ and the area of the triangle is %sin 6, so we find that

O<sin9<9f0r0<9<g. (3.6)
The Sandwich Theorem implies that
limsinf = 0. (3.7)
0\.0

Moreover, we also have

lim cosf = lim /1 — sin®§ = 1. (3.8)
ON\0 OO0

Next we compare the areas of the wedge OAC and the larger triangle OAB. Since OAB
has area %tan@ we find that

0 < tanf
for 0 < 6 < 7. Since tanf = sinf e can multiply with cos 6 and divide by € to get

cos 0

in 0
cos@<%for0<9<g

If we go back to (3.6) and divide by 6, then we get

0030<¥<1

The Sandwich Theorem can be used once again, and now it gives

L
AN
This is a one-sided limit. To get the limit in which 6 0, you use that sin# is an odd
function. O
3.11.1 An example.
We will show that ) 0 1
) — €08
e 3 (8:9)
This follows from sin? 6 + cos?# = 1. Namely,
1—cosf 1 1 —cos?6
02 1+ cosf 62
1 sin®f
~ 1+cosf 62

1 sinf ) *
~ 1+cosh | 6 '

We have just shown that cosf — 1 and #2¢ — 1 as § — 0, so (3.9) follows.

After watching You(® by Mathologer on indeterminate forms, the reader should try using
L’Hopital’s rule to recompute the previous two limits.
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3.12 PROBLEMS

LIMITS FROM FIRST PRINCIPALS

37. Emily offers to make square sheets of paper for Kate. Given x > 0 Emily plans to
mark off a length x and cut out a square of side x. Kate asks Emily for a square with
area 4 square foot. Emily tells Kate that she can’t measure exactly 2 foot and the area
of the square she produces will only be approximately 4 square foot. Kate doesn’t mind
as long as the area of the square doesn’t differ more than 0.01 square foot from what he
really asked for (namely, 4 square foot).

(a) What is the biggest error Emily can afford to make when she marks off the length x7

(b) Bronwyn also wants square sheets, with area 4 square feet. However, she needs the
error in the area to be less than 0.00001 square foot. (She’s paying).

How accurate must Emily measure the side of the squares she’s going to cut for Bronwyn?

Use the e—0 definition to prove the following limits

38. lim1 20 —4=6 1379 44. lin% vVr+6=09. 1380
T z—
. lim2? = 4. 1
39. e =4 1379 45. lim —~ =L 1381
z—=24 + 1
40. limz? —7x+3= -7 379
z—2 . 2 —x 1
46. lim = 3.
41. lim2® = 27 1380 r14 —
r—3 T
42. gl}_)rr%xs—i—Gq;z:?,Q, 47. 31611%6_3: = 1.
43. glglg};\/_ = 2. 1380 48. glﬁlg% Vx| =

49. (Emily goes cubic.) Emily is offering to build cubes of side z. Airline regulations
allow you take a cube on board provided its volume and surface area add up to less than
33 (everything measured in feet). For instance, a cube with 2 foot sides has volume-+area
equal to 23 + 6 x 22 = 32.

If you ask Emily to build a cube whose volume plus total surface area is 32 cubic feet
with an error of at most €, then what error can she afford to make when she measures
the side of the cube he’s making?

50. Our definition of a derivative in (2.5) contains a limit. What is the function “f”
there, and what is the variable? 1381

SUBSTITUTION

Find the following limits.
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i 2+t —2
51. lim (22 +5) 59. lim =
t——1 2 —1
52. lim (22 +5) 2
T 60. lim — 1i
T—00
53. lim (27 +5) .
T——00 . 1'5 + 3
61. lim —
54. lim (z + 3)2006 z—o0 12 + 4
. 62. Tim L
: 2007 . lim
55. $ll>r£l4(x +3) 2500 15 + 2
: 2007 (22 +1)*
2 4+t—2 . (2u+1)t
. lim ——— 64. lim ———
7. ey usroo (3u2 + 1)2
2t —2 . (2t+ 1)t
. lim ——— 65. lim—
58 11}{11 21 20 (3t241)2
66. If lim, ,, f(x) exists then f is continuous at z = a. True or false? 1381
67. Give two examples of functions for which lim,\ o f(x) does not exist. 7381
68. If lim, .o f(z) and lim,_, g(x) both do not exist, then lim, g (f(m) + g(x)) also does
not exist. True or false? 1381
69. If lim, o f(x) and lim, o g(z) both do not exist, then lim,_,o(f(x)/g(x)) also does
not exist. True or false? 1381
70. In the text we proved that lim, . % = 0. Show that this implies that lim,_,,, x does

not exist. Hint: Suppose lim, ,., x = L for some number L. Apply the limit properties

to lim, oo x - —.
x

71.

72.

73.
74.

-3
Evaluate lim Ve 5 Hint: Multiply top and bottom by /x + 3.

z—9 T —

11
T 2

Evaluate lim )
r—2 T — 2

11
Evaluate lim u.
r—2 I — 2

A function f is defined by

x3 for x < —1

flz)=qar+b for —1<z<1
2?2 +2 forz>1.

where a and b are constants. The function f is continuous. What are a and b?

75.

Find a constant k such that the function

(@) 3x+2 forx<?2
1’ =
22+ k foraxz>2.
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is continuous. Hint: Compute the one-sided limits.

76. Find constants a and ¢ such that the function

is continuous for all z.

fz) =

3 +c

ar + c?

for x <0
for0<z<1

arctanx for x > 1.

LIMITS INVOLVING TRIGONOMETRIC FUNCTIONS

Find each of the following limits or show that it does not exist. Distinguish between

limits which are infinite and limits which do not exist.

7.

sin 2«

lim

a—0 SIn «

out the double angle formula!) 381

78.

79.

80.

81.

82.

83.

84.

85.

95.

sin 3x

lim

=0 rsinz
) 1 —sinf
lim ———
0—m/2 (9—7'('/2

223 + 322 cosx

lim
. sin? x
im ——.
z—01 — cosx
. sin(x?)
lim .
x—0 1’2

1381
1381
1381
1381

1381

(two ways: with and with-

86. lim 3
z—0 tan® x

: 2
87, lim S0
z—=01 — cosx

88. lim -2

z—m/2 COST

89. lim (z —Z)tanx.

2

T—7/2
CoS T
90. lim .
z=0 224+ 9
. sinx
91. lim .
r—T r — T
. sinx
92. lim —.
z=0x + sz
. sinx
93. A= lim
r—r0o0 €T
. Ccoszx
94. B = lim
T—>00 €T

Is there a constant k such that the function

fz) =

k

is continuous? If so, find it; if not, say why.

96. Find a constant A so that the function

fz) =

sinx

A

95

{sin(l/x)

for x # 0

for x = 0.

for z #£ 0

when £ =0

z(1 — cos )

1381

+381

1381

+382

("! again)

+382



1382
97. Compute lim, o xsin 7 and lim, o,  tan =. (Hint: substitute something).

98. (Geometry & Trig review) Let A, be the area of the regular n-gon inscribed in the
unit circle, and let B,, be the area of the regular n-gon whose inscribed circle has radius
1.

(a) Show that A,, <7 < B,.

(b) Show that

2
A, = ﬁsin—ﬂ and B, :ntamz
2 n n

(c) Compute lim,,_,o 4, and lim,,_,, B,.

Here is a picture of Ajy (in blue), Bg (in cyan) and 7 (in red):

Figure 3.5: Archimedes uses the sandwitch to compute 7

On a historical note: Archimedes managed to compute Agg and Bgg and by doing this
got the most accurate approximation for 7 that was known in his time. See also:

http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pi_through_the_ages.html
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Chapter 4

Derivatives (continued)

“Leibniz never thought of the derivative as a limit”

http://www.gap-system.org/~history/Biographies/Leibniz.html

In chapter 2 we saw two mathematical problems which led to expressions of the form (Q].
Now that we know how to handle limits, we can state the definition of the derivative of
a function. After computing a few derivatives using the definition we will spend most of
this section developing the differential calculus, which is a collection of rules that allow
you to compute derivatives without always having to use basic definition.

4.1 Derivatives Defined

4.1.1 Definition.

Let f be a function which is defined on some interval (c,d) and let a be some number in
this interval.

The derivative of the function [ at a is the value of the limit

7/(@) = tm {2 =@ (4.1)

r—a €T —aQ

f s said to be differentiable at a if this limit exists.

f is called differentiable on the interval (c,d) if it is differentiable at every point a
in (c,d).
4.1.2 Other notations.

One can substitute x = a + h in the limit (4.1) and let A — 0 instead of x — a. This

gives the formula
F(a) = tim L0 hZL —fla), (4.2)

h—0
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Often you will find this equation written with x instead of a and Az instead of h, which

makes it look like this: i Ax) - f()
' T r+ Ar)— f(x
flz) = AI;IBIEO Ax )

The interpretation is the same as in equation (2.4) from §2.4. The numerator f(z+Ax)—
f(zx) represents the amount by which the function value of f changes if one increases its
argument = by a (small) amount Az. If you write y = f(x) then we can call the increase
in f
Ay = f(x + Azx) = f(x),
so that the derivative f'(x) is
Ay

/ ERT =Y
)= A, Az’

GOTTFRIED WILHELM VON LEIBNIZ, one of the inventors of calculus, came up with the
idea that one should write this limit as

dy _ . BY
dr Az=0 Az’

the idea being that after letting Ax go to zero it didn’t vanish, but instead became an
infinitely small quantity which Leibniz called “dx.” The result of increasing x by this
infinitely small quantity dx is that y = f(z) increased by another infinitely small quantity
dy. The ratio of these two infinitely small quantities is what we call the derivative of
y = f(z).

There are no “infinitely small real numbers,” and this makes Leibniz’ notation difficult to
justify. In the 20th century mathematicians have managed to create a consistent theory
of “infinitesimals” which allows you to compute with “dr and dy” as Leibniz and his
contemporaries would have done. This theory is called “non standard analysis.” We
won't mention it any further'. Nonetheless, even though we won’t use infinitely small
numbers, Leibniz’ notation is very useful and we will use it.

At this point the reader should watch You D) by 3BluelBrown .

4.2 Direct computation of derivatives

4.2.1 Example — The derivative of f(z) =22 is f'(z) = 2z .

We have done this computation before in §2.2. The result was

h o h 2 .2
f'(z) = lim fleth) = f@) = lim (wthy = = lim(2z + h) = 2z.
h—0 h h—0 h—0
Leibniz would have written
dz? 5
— = 21.
dx

'But if you want to read more on this you should see Keisler’s calculus text at
http://www.math.wisc.edu/~keisler/calc.html
I would not recommend using Keisler’s text and this text at the same time, but if you like math you
should remember that it exists, and look at it later.
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4.2.2 The derivative of g(z) =z is ¢'(x) =1 .

Indeed, one has

oy o glath)—glx) . (w+h)—x . h_
7@ =n T e
In Leibniz’ notation:
dx _1
de

This is an example where Leibniz’ notation is most misleading, because if you divide dx

by dx then you should of course get 1. Nonetheless, this is not what is going on. The

expression g—i is not really a fraction since there are no two “infinitely small” quantities

dz which we are dividing.

4.2.3 The derivative of any constant function is zero .

Let k(x) = ¢ be a constant function. Then we have

K(z) = lim PEFR ZR@) e oo,
h—0 h h—0 h h—0

Leibniz would have said that if ¢ is a constant, then

de
%—0.

4.2.4 Derivative of 2" for n=1,2,3,... .

To differentiate f(z) = 2™ one proceeds as follows:

f) = fla) . am —a”

f'(a) = lim = lim :
z—a T —a z—=a T — a
We need to simplify the fraction (2™ — a™)/(x — a). For n = 2 we have
7?2 — a?
=7+ a.
r—a
For n =1,2,3,... the geometric sum formula tells us that
T Ol a2 4 g3 e za™ 2 L (4.3)
r—a

If you don’t remember the geometric sum formula, then you could also just verify (4.3)
by carefully multiplying both sides with & — a. For instance, when n = 3 you would get

X (2 +za+a?) = 2° 4ar? +a’x
—ax (22 +xa+a?) = —ar? —a*r —d?
(—a) x (2 4+ ax +a*) = 2° —a®
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With formula (4.3) in hand we can now easily find the derivative of z™:

" —a”
f'(a) = lim
r—a T — Q
— hm{xn—l +CL’n_2CL+In_36L2 .. +I6Ln_2 +an—1}
r—a

:an—l+an—2a+an—3a2+__.+aan—2+an—l.

Here there are n terms, and they all are equal to ™!, so the final result is

f'(a) = na™ .

n

One could also write this as f'(z) = nz™™!, or, in Leibniz’ notation

dl.n n—1
— =nx
dz
This formula turns out to be true in general, but here we have only proved it for the case
in which n is a positive integer.

4.3 Differentiable implies Continuous

Theorem 4.3.1. If a function f is differentiable at some a in its domain, then f is also
continuous at a.

Proof. We are given that
I~ f()

T—a Tr—a
exists, and we must show that

lim f(z) = f(a).

T—a

This follows from the following computation

lim f(@) = lim ((2) ~ f(a) + f(a) (algebra)
i T@) = (@)

r—a T —a

= {3161_%11 W} -lim (z — a) 4+ lim f(a) (Limit Properties)

(x—a)+ f(a) (more algebra)

r—a T—ra

= f'(a) -0+ f(a) (f'(a) exists)
= f(a).
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4.4 Some non-differentiable functions

4.4.1 A graph with a corner.

Consider the function
x for x > 0,
xTr) = |l =
fl@) =2l {—x for z < 0.

This function is continuous at all z, but it is not differentiable at = = 0.

To see this try to compute the derivative at 0,

f(0) = lim = 10f = lim J| = lim sign(z).

x—0 1 — O z—0 I x—0

We know this limit does not exist (see §3.6.2)

If you look at the graph of f(z) = |z| then you see what is wrong: the graph has a corner
at the origin and it is not clear which line, if any, deserves to be called the tangent to the
graph at the origin.

y = |z|

. tangent?

tangent?

tangent?

. tangent?

Figure 4.1: The graph of y = |x| has no tangent at the origin.

4.4.2 A graph with a cusp.

Another example of a function without a derivative at x = 0 is

fz) = /]al.

When you try to compute the derivative you get this limit

The limit from the right is



which does not exist (it is “400”). Likewise, the limit from the left also does not exist
(tis “—o00). Nonetheless, a drawing for the graph of f suggests an obvious tangent to
the graph at x = 0, namely, the y-axis. That observation does not give us a derivative,
because the y-axis is vertical and hence has no slope.

is tangent the y axis?

y =]z

’
8

Figure 4.2: Tangent to the graph of y = |z|'/? at the origin.

4.4.3 A graph with absolutely no tangents, anywhere.

The previous two examples were about functions which did not have a derivative at x = 0.
In both examples the point x = 0 was the only point where the function failed to have a
derivative. It is easy to give examples of functions which are not differentiable at more
than one value of z, but here I would like to show you a function f which doesn’t have
a derivative anywhere in its domain.

To keep things short I won’t write a formula for the function, and merely show you a
graph. In this graph you see a typical path of a Brownian motion, i.e. ¢ is time, and z(t)
is the position of a particle which undergoes a Brownian motion.

(1)

M i brownian motion
} t

Figure 4.3: A Brownian motion. Note how the graph doesn't have a tangent anywhere at all.

The interested reader can watch this Yol by Luke Harmon for a further explanation
of Brownian motion. To see a similar graph check the Dow Jones or Nasdaq in the upper
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left hand corner of the web page at http://finance.yahoo.com in the afternoon on any
weekday.

4.5 The Differentiation Rules

You could go on and compute more derivatives from the definition. Each time you would
have to compute a new limit, and hope that there is some trick that allows you to
find that limit. This is fortunately not necessary. It turns out that if you know a few
basic derivatives (such as dz"/dx = nz"!) the you can find derivatives of arbitrarily
complicated functions by breaking them into smaller pieces. In this section we’ll look at
rules which tell you how to differentiate a function which is either the sum, difference,
product or quotient of two other functions.

d
Constant rule: d=0 _y
dx
du £+ d d
Sum rule: (utv) =u £ ud:zc v :£i£
duv  du dv
p . oY = - ) = _ = —-
roduct rule (u-v)' =v-v+u-v T = Y + U
du du dv
, P - Uv— —u—
Quotient rule: (E> _wrvmurv v _ _dr drv
v V2 dx v2

Table 4.1: The differentiation rules

The situation is analogous to that of the “limit-properties” (P)...(Fs) from the previous
chapter which allowed us to compute limits without always having to go back to the
epsilon-delta definition.

4.5.1 Sum, product and quotient rules.

In the following ¢ and n are constants, u and v are functions of x, and ' denotes differen-
tiation. The Differentiation Rules in function notation, and Leibniz notation, are listed
in figure 4.1.

Note that we already proved the Constant Rule in example 4.2.2. We will now prove the
sum, product and quotient rules.
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4.5.2 Proof of the Sum Rule.

Suppose that f(z) = u(x) + v(z) for all = where u and v are differentiable. Then

f'(a) = lim @) = fla) (definition of f”)

T—a Tr—a

(u(z) +v(z)) — (u(a) + v(a))

= lim (use f =u+wv)
z—a T —a

= lim (u(m) — u(a) + v@) = v(a)) (algebra)
T—a Tr—a r—a

= lim u(@) = u(e) + lim v(z) = vla) (limit property)
T—a Tr — Qa T—ra Tr—a

=u/(a) +v'(a) (definition of u', v")

4.5.3 Proof of the Product Rule.

Let f(z) = u(z)v(z). To find the derivative we must express the change of f in terms of
the changes of u and v

Now divide by x — a and let x — a:

lim @) = Jta) = lim u(x) + v(a)

T—a T — a T—a Tr—a r—a

(use the limit properties)

= <1im u(a:)) (hm L:zm)> + (lim M)”(a)

r—a r—a x r—a Tr—a

— u(a)v'(a) + ' (a)o(a),
as claimed. In this last step we have used that

alcl—r>lez w =u'(a) and il_rg w ='(a)

and also that

}:ILILII uw(z) = u(a)

This last limit follows from the fact that u is continuous, which in turn follows from the
fact that u is differentiable.
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4.5.4 Proof of the Quotient Rule .

We can break the proof into two parts. First we do the special case where f(z) = 1/v(x),
and then we use the product rule to differentiate

u(r) 1
o) My
So let f(z) = 1/v(x). We can express the change in f in terms of the change in v
_ 1 1 v(z) —v(a)
v(x) w(a)  w(z)v(a)

fz) =

Dividing by x* — a we get
fl@)=fla) 1 w(z)—ve)

r—a  v@vle) z—a

Now we want to take the limit z — a. We are given the v is differentiable, so it must
also be continuous and hence
lim v(z) = v(a).

T—a
Therefore we find
— _ /
i SO0 1) —el) i)
r—a xr—a T—a U(:L’)U(a) r—a T — Q U(a)2

That completes the first step of the proof. In the second step we use the product rule to
differentiate f = u/v

4.5.5 A shorter, but not quite perfect derivation of the Quotient
Rule .

The Quotient Rule can be derived from the Product Rule as follows: if w = u/v then
wev=u (4.4)

By the product rule we have
w v +w-v =,

so that

o — u—w-v _ u = (ufv) -0 _ u’-v—u-v’.
v v v?

Unlike the proof in §4.5.4 above, this argument does not prove that w is differentiable

if v and v are. It only says that i¢f the derivative exists then it must be what the

Quotient Rule says it is.

The trick which is used here, is a special case of a method called “implicit differentiation.”
We have an equation (4.4) which the quotient w satisfies, and from by differentiating this
equation we find w'.
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4.5.6 Differentiating a constant multiple of a function .

Note that the rule
(cu) = cu

follows from the Constant Rule and the Product Rule.

4.5.7 Picture of the Product Rule.

If u and v are quantities which depend on x, and if increasing x by Ax causes u and v
to change by Au and Aw, then the product of v and v will change by

A(uwv) = (u+ Au)(v + Av) — uv = uAv + vAu + Aulwv. (4.5)

If u and v are differentiable functions of x, then the changes Au and Av will be of the
same order of magnitude as Az, and thus one expects AuAv to be much smaller. One
therefore ignores the last term in (4.5), and thus arrives at

A(uv) = uAv + vAu.

Leibniz would now divide by Az and replace A’s by d’s to get the product rule:

uAv AuAv
Av
v UV vAu
u Au

Figure 4.4: The Product Rule. How much does the area of a rectangle change if its sides u and
v are increased by Au and Av? Most of the increase is accounted for by the two thin rectangles
whose areas are uAv and vAu. So the increase in area is approximately uAv + vAwu, which explains
why the product rule says (uv) = uv’ + vu'.

4.6 Differentiating powers of functions

4.6.1 Product rule with more than one factor.

If a function is given as the product of n functions, i.e.
f(@) = ua(z) X up(x) X -+ X up(x),
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then you can differentiate it by applying the product rule n—1 times (there are n factors,
so there are n — 1 multiplications.)

After the first step you would get

f/ :ull(u2un) +u1(u2...un),.

In the second step you apply the product rule to (usus - --u,)’. This yields
f=ulug - u, +ug [u’2U3 Uy + ug(ug - un)’]
= U U+ Up + ULUHUZ * * + Uy + uluQ(U3 . -un)/.
Continuing this way one finds after n — 1 applications of the product rule that

(ul---un)/ = UjUsp Uy F ULUYUZ - - Uy + - +U1U2U3"'U;- (4.6)

4.6.2 The Power rule .

If all n factors in the previous paragraph are the same, so that the function f is the n'®
power of some other function,
n
fz) = (u(x))",

then all terms in the right hand side of (4.6) are the same, and, since there are n of them,
one gets
(@) = nu"H(a)u/ (2),
or, in Leibniz’ notation,
du” o1 du
— =nu" —.
dx dx
4.6.3 The Power Rule for Negative Integer Exponents .

We have just proved the power rule (4.7) assuming n is a positive integer. The rule
actually holds for all real exponents n, but the proof is harder.

Here we prove the Power Rule for negative exponents using the Quotient Rule. Suppose

n = —m where m is a positive integer. Then the Quotient Rule tells us that
1Y (u™)
n\/ __ —m\/ Y Q~:R~ .

/ m

Since m is a positive integer, we can use (4.7), so (u™) = mu™"!, and hence
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4.6.4 The Power Rule for Rational Exponents .

So far we have proved that the power law holds if the exponent n is an integer.

We will now see how you can show that the power law holds even if the exponent n
is any fraction, n = p/q. The following derivation contains the trick called implicit
differentiation which we will study in more detail in Section 4.10.

So let n = p/q where p and ¢ are integers and consider the function
w(z) = u(x)P/9.
Assuming that both v and w are differentiable functions, we will show that

w'(x) = gu@)ilu'(x) (4.8)

Raising both sides to the qth power gives

Here the exponents p and ¢ are integers, so we may apply the Power Rule to both sides.
We get

qui™t W = puPt

Dividing both sides by quw?!' and substituting u?/? for w gives

/ / !/

—1 —1 —1
,:pup .u_pup .u_pup .u:Z—?-u(p/q)_l'ul

qui—t  qurla—D/a  gup—(/a) q

w

which is the Power Rule for n = p/q.

This proof is flawed because we did not show that w(x) = u(x)?/? is differentiable: we
only showed what the derivative should be, if it exists.

4.6.5 Derivative of 2" for integer n .

If you choose the function u(z) in the Power Rule to be u(x) = z, then «/(z) = 1, and
hence the derivative of f(x) = u(z)" = 2™ is

f/(l‘) = nu($)n_1u'(x) = ngp”_l .1 = nl,n—l‘

We already knew this of course.

4.6.6 Example — differentiate a polynomial .

Using the Differentiation Rules you can easily differentiate any polynomial and hence any
rational function. For example, using the Sum Rule, the Power Rule with u(z) = x, the
rule (cu)’ = cu/, the derivative of the polynomial

flx)=22"—2®+7
is

f'(z) = 8x% — 322
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4.6.7 Example — differentiate a rational function.
By the Quotient Rule the derivative of the function

_2x4—x3+7

9(x) 1+ 22

is
(823 — 32?)(1 + 2%) — (22* — 23 + 7)2z
(14 x2)?
62 — 2" 4 8% — 32% — 14x
(1+ 22)2

g'(x) =

If you compare this example with the previous then you see that polynomials simplify
when you differentiate them while rational functions become more complicated.

4.6.8 Derivative of the square root .
The derivative of f(x) = \/z = 2'/? is

1 1 1 1
/ _ 2= _ - -1/ __ - _ =
f(@) 5% 27 2212 2\/x

where we used the power rule with n = 1/2 and u(z) = x.

4.7 Higher Derivatives

4.7.1 The derivative is a function.

If the derivative f’(a) of some function f exists for all a in the domain of f, then we have
a new function: namely, for each number in the domain of f we compute the derivative
of f at that number. This function is called the derivative function of f, and it is
denoted by f’. Now that we have agreed that the derivative of a function is a function,
we can repeat the process and try to differentiate the derivative. The result, if it exists,
is called the second derivative of f. It is denoted f”. The derivative of the second
derivative is called the third derivative, written f”’, and so on.

The nth derivative of f is denoted f™. Thus

fO=f =g, =g =g
Leibniz’ notation for the nth derivative of y = f(z) is

&Y _ o),

dx™
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4.7.2 Example.

If f(x) =2? — 22 + 3 then

flz) =2 —22+3
f(x) =22 —2
f(z) =2
f9@) =0
() =0

All further derivatives of f are zero.

4.7.3 Operator notation.

A common variation on Leibniz’ notation for derivatives is the so-called operator no-

tation, as in
dz®* —x) d, 4

= —(2° — ) =32 - 1.

dx dx

For higher derivatives one can write

Py _(dY
dz?  \dzx y

Be careful to distinguish the second derivative from the square of the first derivative.

Usuall
’ dy |, (dy\’
zJ 29)
- ( dx)

This Youf® by 3BluelBrown gives a nice interpretation to higher order derivatives.

4.8 Differentiating Trigonometric functions

The trigonometric functions Sine, Cosine and Tangent are differentiable, and their deriva-
tives are given by the following formulas

dsinx dcosz . dtanx 1
= = —sinz, =
dx

(4.9)

dr  cos?x’
Note the minus sign in the derivative of the cosine!
Proof. By definition one has

sin(z + h) — sin(x)'

-/ -
sin’(x) = lim
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To simplify the numerator we use the trigonometric addition formula
sin(a + ) = sinacos B + cos asin .
with o = x and 8 = h, which results in

sin(z + h) —sin(z)  sin(z) cos(h) + cos(z) sin(h) — sin(x)

h h
in(h h)—1
= cos(z) sin(h) + sin(x)%
Hence by the formulas
i —1
lim sin(h) =1 and lim M =0
h—0 h h—0
from Section 3.11 we have
i -1
sin’(z) = lim cos(x)sm(h) + sin(x)M
h—0 h
= cos(z) - 1 +sin(z) - 0
= cos(z).

A similar computation leads to the stated derivative of cos .

To find the derivative of tan z we apply the quotient rule to

sinz  f(x)

tanz = A
WME= sz g(x)
We get
o () — cos(x) sin’(z) — sin(x) cos'(x) _ cos?(x) + sin®(z) _ 1
cos?(x) cos?(x) cos?(x)
as claimed. O

4.9 The Chain Rule

4.9.1 Composition of functions.

Given two functions f and g, one can define a new function called the composition of
f and g. The notation for the composition is f o g, and it is defined by the formula

fog(x)=f(g(x)).

The domain of the composition is the set of all numbers = for which this formula gives
you something well-defined.
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For instance, if f(z) = 2* + z and g(x) = 2z + 1 then

foglx)=f(2x+1)=(2z+1)°+ (2z+1)
and go f(z) = g(2* +2) =2(z" + ) + 1

Note that fog and go f are not the same fucntion in this example (they hardly ever are
the same).

If you think of functions as expressing dependence of one quantity on another, then the
composition of functions arises as follows. If a quantity z is a function of another quantity
y, and if y itself depends on z, then z depends on x via y.

To get f o g from the previous example, we could say z = f(y) and y = g(z), so that
z=f(y)=y*+yand y =2z + 1.
Give x one can compute y, and from y one can then compute z. The result will be
=y +y=02z+1)*+ 22+ 1),
in other notation,
2= fy) = f(g(2)) = fog(x).
One says that the composition of f and g is the result of subsituting g in f.

Theorem 4.9.1 (Chain Rule). If f and g are differentiable, so is the composition f o g.
The derivative of f o g is given by

(f o g)(x) = f'(9(x)) §'(z).

The chain rule tells you how to find the derivative of the composition fog of two functions
f and ¢ provided you now how to differentiate the two functions f and g.

When written in Leibniz’ notation the chain rule looks particularly easy. Suppose that
y=g(z) and z = f(y), then z = fog(z), and the derivative of z with respect to z is the
derivative of the function f o g. The derivative of z with respect to y is the derivative of
the function f, and the derivative of y with respect to x is the derivative of the function
g. In short,

dz , dz , dy ,
& _ g d =2 —
o= (fog)(x), o= (y) and = = ¢'(x)
so that the chain rule says
dz dz dy
— = . 4.10
de  dy dx ( )

First proof of the chain rule (using Leibniz’ notation). We first consider difference quo-
tients instead of derivatives, i.e. using the same notation as above, we consider the effect
of an increase of x by an amount Az on the quantity z.

If x increases by Az, then y = g(z) will increase by

Ay = g(z + Azx) — g(z),
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A depends on B depends on C depends on...

Someone is pumping water into a balloon.
Assuming that the balloon is spherical you
can say how large it is by specifying its ra-
dius R. For a growing balloon this radius
will change with time ¢.

The volume of the balloon is a function

i.e. the function which tells you the volume
of the balloon at time t is the composition
of first f and then g.

Schematically we can summarize this
chain of cause-and-effect relations as fol-
lows: you could either say that V' depends

of its radius, since the volume of a sphere
of radius r is given by

on 7, and r depends on t,

4 3
V= 37 radius vol‘u/me
We now have two functions, the first f i f r g | (depends
. ' t t| — | (depends| —
turns tells you the radius r of the balloon ( opn on
at time ¢, time 1) radius
r=f() T)

and the second tells you the volume of the

balloon given its radius or you could say that V' depends directly

V = g(r). on t:
The volume of the balloon at time ¢ is then
iven by go volume V
& J (depends on
V:g(f(t)> =go f(t), time t)

Figure 4.5: A “real world example” of a composition of functions.

and z = f(y) will increase by
Az = f(y+ Ay) — f(y).

The ratio of the increase in z = f(g(x)) to the increase in z is

Az Az Ay
Ax Ay Az’

In contrast to dz, dy and dz in equation (4.10), the Az, etc. here are finite quantities, so

this equation is just algebra: you can cancel the two Ays. If you let the increase Ax go

to zero, then the increase Ay will also go to zero, and the difference quotients converge

to the derivatives,
Az dz Az dz Ay dy

—_— =, = — =, —= —
Az drz’ Ay dy’  Ax dx
which immediately leads to Leibniz’ form of the quotient rule. m

Proof of the chain rule. We verify the formula in Theorem 4.9.1 at some arbitrary value
r = a, i.e. we will show that

(f o g9)(a) = f'(g(a)) g'(a).
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By definition the left hand side is

(f o g)(a) = lim (fog)x) = (fog)a) _ . [lg())— flg(a))

T—a Tr—a r—a T —a

The two derivatives on the right hand side are given by

#(a) = lim 9(x) —g(a)

r—a T —a

and

- fly) = flg(a))
f(g(a)) = lim .
) =y
Since ¢ is a differentiable function it must also be a continuous function, and hence
lim, ., g(z) = g(a). So we can substitute y = g(x) in the limit defining f'(g(a))

, i JW) = fl9(@)
Flgta) = lim = — o~ = ) =

(4.11)

Put all this together and you get

(f ©g)'(a) = lim

L Hle@) ~ fe(@) gl@) — g(a)
T—a g(x) _ g(a) r—a

i J0@) = fg(a) . g(@) = g(a)
T—a g(l‘) — g(a) T—a T —a

= f'(9(a)) - ¢'(a)

which is what we were supposed to prove — the proof seems complete.

There is one flaw in this proof, namely, we have divided by g(z) — g(a), which is not
allowed when g(x) — g(a) = 0. This flaw can be fixed but we will not go into the details
here.? O

Before tackling some examples that require the rules of differentiation the reader is en-
couraged to view You B by 3BluelBrown .

4.9.2 First example.

We go back to the functions

z=f(y)=y" +yandy=g(x)=2z+1

2 Briefly, you have to show that the function

[UW) - Fea)} - g(@) ya
M) = {f’(g(a ) y=a

is continuous.
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from the beginning of this section. The composition of these two functions is
2= f(g(z)) = 2z +1)° + (2x + 1) = 42” + 6z + 2.

We can compute the derivative of this composed function, i.e. the derivative of z with
respect to z in two ways. First, you simply differentiate the last formula we have:

dz  d(4z® + 6z + 2)

= = = ) 4.12
- o 8r +6 (4.12)
The other approach is to use the chain rule:
dz  d(y*+vy)
— =" =2 1
and
dy d(2x+1) _y
de ~  do 7
Hence, by the chain rule one has
dz dz dy
—=— ==(2 1)-2=4y +2. 4.13
i dy do (2y +1) Y+ (4.13)

The two answers (4.12) and (4.13) should be the same. Once you remember that y = 2x+1
you see that this is indeed true:

y=2r+1 = 4y+2=4Q2x+1)+2=8x+6.

The two computations of dz/dx therefore lead to the same answer. In this example there
was no clear advantage in using the chain rule. The chain rule becomes useful when the
functions f and g become more complicated.

4.9.3 Example where you really need the Chain Rule.

We know what the derivative of sin x with respect to x is, but none of the rules we have
found so far tell us how to differentiate f(z) = sin(2z).

The function f(x) = sin 2z is the composition of two simpler functions, namely
f(z) = g(h(z)) where g(u) = sinu and h(z) = 2.
We know how to differentiate each of the two functions g and h:
g (u) =cosu, h'(x)=2.
Therefore the chain rule implies that
f(z) = ¢ (h(x))l (z) = cos(2x) - 2 = 2 cos 2z.
Leibniz would have decomposed the relation y = sin 2z between y and z as
y=sinu, u=2x
and then computed the derivative of sin 2z with respect to x as follows

dsin 2z y—o, dsinu dsinu  du 9 _ 9 5
= = - — = cosu -2 =2cos2x.
dx dx du dx
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4.9.4 The Power Rule and the Chain Rule.

The Power Rule, which says that for any function f and any rational number n one has

L)) = () ),

is a special case of the Chain Rule, for one can regard y = f(x)" as the composition of
two functions

y=g(u), u=f(z)
where g(u) = u". Since ¢'(u) = nu™"! the Chain Rule implies that

du” du™  du oy du
= =nu"" —

dr  du  dr d’
Setting u = f(z) and Z—Z = f'(x) then gives you the Power Rule.
4.9.5 The volume of an inflating balloon.

Consider the “real world example” from page 73 again. There we considered a growing
water balloon of radius

r=f(t).
The volume of this balloon is
4 4
V= §7T7"3 = §7Tf(t)3
We can regard this as the composition of two functions, V = g(r) = 37r® and r = f(¢).

According to the chain rule the rate of change of the volume with time is now

v dv dr

dt — dr dt
i.e. it is the product of the rate of change of the volume with the radius of the balloon
and the rate of change of the balloon’s radius with time. From

dv d%ﬂr?’
A — 42
dr dr o
we see that
dV L dr
dr dt

For instance, if the radius of the balloon is growing at 0.5inch/sec, and if its radius is
r = 3.0inch, then the volume is growing at a rate of
av.

i 47 (3.0inch)? x 0.5inch/sec ~ 57inch? /sec.
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4.9.6 A more complicated example.

Suppose you needed to find the derivative of

va+1

y=hiz) = ——

(Vo +1+1)2

We can write this function as a composition of two simpler functions, namely,

with "
flu) = ——5 and g(x) = vz + 1.

(u+1)
The derivatives of f and g are

L-(u+1)?—u-2(u+1) wu+1-2 wu—1

fiw) = (u+ 1) T w1 (w1

and
1

/
) = ———.
g() 2vVx +1
Hence the derivative of the composition is
d { Vo +1

, oy u—1 . 1
= (¢x—+1+1>2}:““)9($)—<u+1)3 NS

The result should be a function of x, and we achieve this by replacing all w’s with

u=+x+1:
d{ Vo+1 }_ ve+1—-1 1

de (Ve +1+12) (Vo+i+13 2Vz+1

The last step (where you replace u by its definition in terms of z) is important because
the problem was presented to you with only x and y as variables while u was a variable
you introduced yourself to do the problem.

h'(z) =

Sometimes it is possible to apply the Chain Rule without introducing new letters, and
you will simply think “the derivative is the derivative of the outside with respect to the
inside times the derivative of the inside.” For instance, to compute

d4+ V7423
dz
you could set u = 7 + 3, and compute

dd+VT7+a2%  dd+u du
dz N du dzr’

Instead of writing all this explicitly, you could think of u = 7 + 2 as the function
“inside the square root,” and think of 4 + /u as “the outside function.” You would then

immediately write
1

N
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4.9.7 The Chain Rule and composing more than two functions.

Often we have to apply the Chain Rule more than once to compute a derivative. Thus if
y= f(u), u=g(v), and v = h(x) we have

In functional notation this is

(fogoh)(x) = f(g(h(z)) - g (h(x)) - H(x).

Note that each of the three derivatives on the right is evaluated at a different point. Thus
if b = h(a) and ¢ = g(b) the Chain Rule is

d_u
dv

u=c

dv

W w
, dx

dz

_dy
 du

r=a

V= r=a

For example, if y = , then y = 1/(1+u) where u = 14 +/v and v = 9+ 2% so

1
1+ V9 + a2
dy dy du dv 1 1

A =— . - 2.
dr  du dv dx (14+u)? 2y/v v

SO

d_u
dv

d_v
dx

. T 10

4.10 Implicit differentiation

4.10.1 The recipe.

Recall that an implicitely defined function is a function y = f(x) which is defined by an
equation of the form

F(z,y) =0.
We call this equation the defining equation for the function y = f(z). To find y = f(x)
for a given value of x you must solve the defining equation F'(x,y) = 0 for y.

Here is a recipe for computing the derivative of an implicitely defined function.

1. Differentiate the equation F(x,y) = 0; you may need the chain rule to deal with
the occurences of y in F(z,y);

2. You can rearrange the terms in the result of step 1 so as to get an equation of the
form
dy
G(z, y)% + H(z,y) =0, (4.14)

where G and H are expressions containing z and y but not the derivative.
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d
3. Solve the equation in step 2 for d—y:
x

dy _ H(z,y)

dr — G(z,y)

(4.15)

4. If you also have an explicit description of the function (i.e. a formula expressing
y = f(x) in terms of =) then you can substitute y = f(z) in the expression (4.15)
to get a formula for dy/dzx in terms of x only.

Often no explicit formula for y is available and you can’t take this last step. In that
case (4.15) is as far as you can go.

Observe that by following this procedure you will get a formula for the derivative %

dx
which contains both x and y.

4.10.2 Dealing with equations of the form Fi(x,y) = Fy(z,y).

If the implicit definition of the function is not of the form F'(x,y) = 0 but rather of the
form Fi(z,y) = Fy(x,y) then you move all terms to the left hand side, and proceed as
above. E.g. to deal with a function y = f(x) which satisfies

v 4=y

you rewrite this equation as
vV rr—ay=0

and set F(z,y) =y> + 1 — zy.

4.10.3 Example — Derivative of v/1 — z4.
Consider the function
flx)=v1—at —-1<z<l.

We will compute its derivative in two ways: first the direct method, and then using the
method f implicit differentiation (i.e. the recipe above).

The direct approach goes like this:

d(1 — ")
iy = XU dz)
—g/ad(1 — 2*
:}1(1_354) 3/ad( dxx)
=) )
$3

To find the derivative using implicit differentiation we must first find a nice implicit
description of the function. For instance, we could decide to get rid of all roots or
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fractional exponents in the function and point out that y = v/1 — 24 satisfies the equation
y* =1 — 2. So our implicit description of the function y = f(z) = V1 — 2% is

ot oyt —1=0; The defining function is therefore F(z,y) = z* +y* — 1

Differentiate both sides with respect to x (and remember that y = f(x), so y here is a
function of x), and you get

dz*  dy* dl dy

. _——:0:>43 43_20

dz * dr  dx Ty dx
The expressions G and H from equation (4.14) in the recipe are G(z,y) = 4y® and
H(x,y) = 423,
This last equation can be solved for dy/dx:

dy 3

de 3
This is a nice and short form of the derivative, but it contains y as well as x. To express
dy/dz in terms of x only, and remove the y dependency we use y = V1 — 24 The result

is X .
dy x x

f’(l') T dr Y3 (1 —:E4)3/4'

4.10.4 Another example.

Let f be a function defined by

y=f(zr) < 2y+siny ==z, ie 2y+siny—x=0.
For instance, if x = 27 then y = 7, i.e. f(27) = 7.
To find the derivative dy/dz we differentiate the defining equation

d2y+siny —z) dO dy dy dx dy
_d0 YT _ g 9 Y 1o,
dx dx dx s ydac dx (2+ cosy) dx

Solve for % and you get

1 1
~ 24cosy  2+cos f(x)

f'(x)

If we were asked to find f'(27) then, since we know f(27) = 7, we could answer
1 1

'(2r) = = =1
A N
If we were asked f’(7/2), then all we would be able to say is
1
/
2) = .
fx/2) 2+ cos f(m/2)

To say more we would first have to find y = f(7/2), which one does by solving

) s
2y 4+ siny = 5
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4.10.5 Derivatives of Arc Sine and Arc Tangent.

Recall that

y=arcsinr < x =sinyand — 3 <y <7,

and
y=arctanr <= r=tanyand — 5 <y < 7.

Theorem 4.10.1.

darcsinr 1
de  J1—22
darctanz 1
dx 1422
Proof. If y = arcsinx then x = siny. Differentiate this relation
dr  dsiny
de ~  duo

and apply the chain rule. You get

dy
1= —
(cos y) I
and hence
dy 1
dr  cosy’

How do we get rid of the y on the right hand side? We know x = siny, and also
—5 <y < 3. Therefore

sin?y +cos’y =1 = cosy = +£41/1 —siny = £v1 — a2.
Since —5 <y < 7 we know that cosy > 0, so we must choose the positive square root.
This leaves us with cosy = +/1 — 22, and hence
dy 1
de  1— a2

The derivative of arctan x is found in the same way, and you should really do this yourself.
O

4.11 PROBLEMS

DIFFERENTIATION
99. Compute the derivative of the following fimctions
flz) =2 — 2 o(z) :i
k(z) = 28 — 172 u(z) = 1376
1
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using either (4.1) or (4.2).
100. Which of the following functions is differentiable at z = 07

f(@) = x|, g(x) = xv/lx],
h(z) =+ |z|, k(z)=2? Sing,

T
{(x) = xsin—.
(r) = xsin "

These formulas do not define k and ¢ at = = 0. We define k£(0) = ¢(0) = 0.
101. For which value(s) is the function defined by

f(x):{a:v+b for x <0

x—a> forz>0

differentiable at x = 07 Sketch the graph of the function f for the values a and b you
found.

102. For which value(s) is the function defined by

ar’+b forz <1
f<$)_{:c—x2 for x > 1

differentiable at x = 07 Sketch the graph of the function f for the values a and b you
found.

103. For which value(s) is the function defined by

fx) =

ar’? forz <2
z+b forx>2

differentiable at = 07 Sketch the graph of the function f for the values a and b you
found.

104.
True or false: If a function f is continuous at some x = a then it must also be
differentiable at © = a?

105.

True or false: 1f a function f is differentiable at some x = a then it must also be
continuous at r = a?

RULES OF DIFFERENTIATION

106. Let f(z) = (z* + 1)(2* + 3). Find f'(z) in two ways:
(a) by multiplying and then differentiating,
(b) by using the product rule.
Are your answers the same?
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107. Let f(z) = (1+2%)* Find f/(z) in two ways, first by expanding to get an expression
for f(z) as a polynomial in x and then differentiating, and then by using the power rule.
Are the answers the same?

108. Prove the statement in §4.5.6, i.e. show that (cu) = c¢(u’) follows from the product
rule.

Compute the derivatives of the following functions. (try to simplify your answers)

109. f(z) =2 +1+ (x+1) 115. f(z) = 1+x\/5
T — 2
110. fl@) = 257 116. f(z) = L_rz
1.
11 f@) = (1) 1 117. f(z) = {Jz + Vz
112, f(z) = V1—2? 118. o(t) = 1+t\/g
ax +b
13 fle) = cx +d 119. g(s) = 112
1
114. f(z) = I 120. h(p) = {/p+/p

121. Using derwatives to approrimate numbers.

(a) Find the derivative of f(x) = z*/3.

(b) Use (a) to estimate the number

1274/3 — 125%/3
2

approximately without a calculator. Your answer should have the form p/q where p and

q are integers. [Hint: Note that 5% = 125 and take a good look at equation (4.1).]

(c) Approximate in the same way the numbers /143 and /145 (Hint: 12 x 12 = 144).
122. Making the product and quotient rules look nicer.

Instead of looking at the derivative of a function you can look at the ratio of its derivative

to the function itself, i.e. you can compute f’/f. This quantity is called the logarithmic

derivative of the function f for reasons that will become clear later.

(a) Compute the logarithmic derivative of these functions (i.e. find f'(z)/f(x))
F(z) =2, glx)=3z, h(z)=a2a?
k(z) = —2*, ((x) = 20072, m(z) = 22

(b) Show that for any pair of functions u and v one has

(wv)" N v’
w  ou v
(w/v) WV
w/v  u
(w) _
-_—t=n —
u" U
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123. (a) Find f'(z) and ¢/(z) if

1+ 2?2 22t 47
a o142

Note that f(x) = 1/g(x).
(b) Is it true that f'(z) = 1/9’ z)?
(c) Is it true that f(z) = z)?

i
(d) Is it true that f(z) = (:L‘) ?

124. (a) Let z(t) = (1 —3) /(1 +t2), y(t) = 2t/(1 + t?) and u(t) = y(t)/x(t). Find dz/dt,
dy/dt.
(b) Now that you've done (a) there are two different ways of finding du/dt. What are
they, and use one of both to find du/dt.

HIGHER DERIVATIVES

125. The equation
2x 1 1

932—1:3:+1+a:—1 (f)
holds for all values of x (except x = +1), so you should get the same answer if you
differentiate both sides. Check this.

Compute the third derivative of f(x) = 2z/(z* — 1) by using either the left or right hand
side (your choice) of (f).

126. Compute the first, second and third derivatives of the following functions

flz) = (x+1)* g(z) = (2* + 1)

127. Find the derivatives of 10 order of the functions

1
fa) = 2"+ o) =1
12 x?

128. Find f'(z), f"(z) and f©®(x) if

flz) =1+ L
= T+ —+ =+ =4+ —+ =
2 6 24 120 720

1
r+2

129. Find the 12" derivative of the function f(z) =
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130. Find the n'® order derivative of f(x) =
valid for all n =0,1,2,3...).

T+ 2

(i.e. find a formula for f™(z) which is

131. Find the n'" order derivative of g(z) = %
x

132. Find dy/dz and d*y/dz?* if y = z/(z + 2).
133. Find du/dt and d?u/dt* if u =t/(t + 2). Hint: See previous problem.
d d?
134. Find e (x —xl— 2) and e (x i 2). Hint: See previous problem.
135. Find - (—* and L (1),
de \z+2)|,_, dr \1+2
136. Find d?y/dz* and (dy/dx)? if y = 3.

DIFFERENTIATING TRIGONOMIC FUNCTIONS

Find the derivatives of the following functions (try to simplify your answers)

137. f(x) = sin(z) + cos(x) 143. f(x) = cos*(x)
138. f(x) = 2sin(x) — 3 cos(x)
144. = V1 —sin’
139. f(z) = 3sin(z) + 2 cos(x) /@) T
140. f(x) = zsin(x) + cos(z) 145. f(z) = /1— s?nx
141. f(x) = xcos(x) —sinz L +sinz
142. f(z) = MY 146. cot(z) = iy
x sin x
147. Can you find a and b so that the function
CcoS & forx<Z
flx) = .
a+br forxz>7%
is differentiable at x = 7 /47
148. Can you find a and b so that the function
tanx forx < %
fz) = ;
a+bxr for x> 5

is differentiable at x = /47

149. If f is a given function, and you have another function g which satisfies g(x) = f(x)+12
for all z, then f and g have the same derivatives. Prove this. [Hint: it’s a short proof —

use the differentiation rules.]

150.
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Show that the functions

f(z) =sin®z and g(z) = —cos’x
have the same derivative by computing f’(z) and ¢'(z).
With hindsight this was to be expected — why?

151. Find the first and second derivatives of the functions

1

= t 2 d - .
f(z) = tan” z and g(x) ey

Hint: remember your trig to reduce work! 1382

THE CHAIN RULE

152. Let y = V1 + 23 and find dy/dx using the Chain Rule. Say what plays the role of
y = f(u) and u = g(x).

153. Repeat the previous problem with
y=(1+V1+a)

154. Emily and Kate differentiated y = v/1 4+ 22 with respect to x differently. Emily wrote
y = v/u and u = 1 + 23 while Kate wrote y = v/1 + v and v = 2. Assuming neither one
made a mistake, did they get the same answer?

d d
155. Let y = v®+ 1 and v = 3z + 7. Find d_y and d_y Express the former in terms of x
x U
and the latter in terms of w.

156. Suppose that f(z) = /z, g(x) = 1 + 2%, v(z) = fog(x), w(zr) = go f(x). Find
formulas for v(z), w(z), v'(z), and w'(z).

Compute the following derivatives

. : 2
157. f(x) = sin2z — cos 3x 1382 160. f(z) = stw 1382
X
.
158. J(x) =sin o 1382 161. f(z) = tanv/1 1 22 1382
159. f(x) = sin(cos 3x) 1382 162. f(z) = cos’x — cosz” 1382

163. Emily is pouring water into a glass. At time ¢ (seconds) the height of the water in
the glass is h(t) (inch). The glass company, which made the glass, says that the volume
in the glass to height h is V' = 1.2 h? (fluid ounces).

(a) The water height in the glass is rising at 2 inch per second at the moment that the
height is 2 inch. How fast is Emily pouring water into the glass?

(b) If Emily pours water at a rate of 1 ounce per second, then how fast is the water level
in the glass going up when it is 3 inches?
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(c) If Emily pours water at 1 ounce per second, and at some moment the water level is

going up at 0.5 inch per second. What is the water level at that moment?
164. Find the derivative of f(z) = 2 cos T at the point z = —2. 1382

165. Suppose that f(x) =z? + 1, g(z) = 2 + 5, and
v=fog, ~w=gof, p=f-g9  q=g-f

Find v(z), w(x), p(x), and ¢(x). 1382

166. Suppose that the functions f and g and their derivatives with respect to x have the
following values at x = 0 and = = 1.

f'(@) | d'(x)
1 5 | 1/3
4 | -1/3 | -8/3

=}

8
=
wHé/
=
B

Define

Evaluate v(0), w(0), p(0), ¢(0), v'(0) and w’(0), p'(0), ¢'(0). If there is insufficient infor-
mation to answer the question, so indicate.

167. A differentiable function f satisfies f(3) =5, f(9) =7, f/(3) = 11 and f'(9) = 13.
Find an equation for the tangent line to the curve y = f(z?) at the point (z,y) = (3,7).

168. There is a function f whose second derivative satisfies
f(@) = —64f(x). (1)

(a) One such function is f(z) = sin az, provided you choose the right constant a: Which
value should a have?

(b) For which choices of the constants A, a and b does the function f(z) = Asin(ax + b)
satisfy ()7 1382

169. A cubical sponge, hereafter refered to as ‘Bob’; is absorbing water, which causes him
to expand. His side at time ¢ is S(t). His volume is V (¢).
(a) What is the relation between S(t) and V(¢), i.e. can you find a function f so that
V(t) = f(S(t))?
(b) Describe the meaning of the derivatives S’(¢) and V'(¢) in one plain english sen-
tence each. If we measure lengths in inches and time in minutes, then what units do

t,S(t), V(t),S'(t) and V'(t) have?
(c) What is the relation between S’(t) and V'(¢)?

(d) At the moment that Bob’s volume is 8 cubic inches, he is absorbing water at a rate
of 2 cubic inch per minute. How fast is his side S(t) growing? 1382
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IMPLICIT DIFFERENTIATION

For each of the following problems find the derivative f’(z) if y = f(x) satisfies the given
equation. State what the expressions F'(x,y), G(z,y) and H(x,y) from the recipe in this
chapter are.

If you can find an explicit description of the function y = f(x), say what it is.

170. xy:% 177. (y+2)2+2y—2=0
171. sin(zy) = 3 178. (y2—1)2+x:0
172. wiyy:1 179. (" + 1)’ —2=0
173. z+y==xay 180. x3+xy—|—y3:3
174. (y_1)2_|_$:() 181. sinz +siny =1
175. (y+1)>2*+y—2=0 182. sinz +azy+y’=m
176. (y—2)*+2=0 183. tanz +tany =1

For each of the following explicitly defined functions find an implicit definition which does
not involve taking roots. Then use this description to find the derivative dy/dz.

184. y=f(z)=vl-= 188. y = f(z) = \/V2zr +1— a2
185. y = f(z) = Va + 22 189. y = f(z) = Vo + a2
186. y = f(z) = /1 —/x 190. y = f(z) =z — V22 +1

187. y= f(x) = o —/x 191. y = f(z) =/ Yz

192.

(Inverse trig review) Simplify the following expressions, and indicate for which values of
x (or 0, or ...) your simplification is valid. In case of doubt, try plotting the function
on a graphing calculator.

(a) sinarcsinz (e) tanarctanz
(b) cosarcsinx (f) tanarcsiné
(c) arctan(tand) (g) arcsin(sinf)
(d) cotarctanz (h) cotarcsinz

Now that you know the derivatives of arcsin and arctan, you can find the derivatives of
the following functions. What are they?

193. f(x) = arcsin(2x) 196. f(x) =sinarctanx
194. f(x) = arcsinx
195. f(z) = arctan(sinz) 197. f(z) = (arcsin x)g
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_ 1 199. — /1 (arcsinz)?
198. f(x) = 7 (arctan 2)? f(z) ;{Ctan(jrcsm )
200. f(z) = ———

arcsin &

RELATED RATES OF CHANGE

201. A 10 foot long pole has one end (B) on the floor and another (A) against a wall. If
the bottom of the pole is 8 feet away from the wall, and if it is sliding away from the wall
at 7 feet per second, then with what speed is the top (A) going down?

wall ole (10 ft)

floor B

Figure 4.6: A pole leaning against a wall

202. A pole 10 feet long rests against a vertical wall. If the bottom of the pole slides away
from the wall at a speed of 2 ft/s, how fast is the angle between the top of the pole and
the wall changing when the angle is /4 radians?

203. A pole 13 meters long is leaning against a wall. The bottom of the pole is pulled
along the ground away from the wall at the rate of 2 m/s. How fast is its height on the
wall decreasing when the foot of the pole is 5 m away from the wall?

204. A television camera is positioned 4000 ft from the base of a rocket launching pad. A
rocket rises vertically and its speed is 600 ft/s when it has risen 3000 feet.

(a) How fast is the distance from the television camera to the rocket changing at that
moment?

(b) How fast is the camera’s angle of elevation changing at that same moment? (Assume
that the television camera points toward the rocket.)

205. A 2-foot tall dog is walking away from a streetlight which is on a 10-foot pole. At a
certain moment, the tip of the dogs shadow is moving away from the streetlight at 5 feet
per second. How fast is the dog walking at that moment?

206. An isosceles triangle is changing its shape: the lengths of the two equal sides remain
fixed at 2 inch, but the angle #(¢) between them changes.

Let A(t) be the area of the triangle at time ¢. If the area increases at a constant rate of
0.5inch? /sec, then how fast is the angle increasing or decreasing when 6 = 60°?

89



207. A point P is moving in the first quadrant of the plane. Its motion is parallel to the
x-axis; its distance to the z-axis is always 10 (feet). Its velocity is 3 feet per second to
the left. We write # for the angle between the positive xz-axis and the line segment from
the origin to P.

(a) Make a drawing of the point P.
(b) Where is the point when § = /37
(c) Compute the rate of change of the angle 6 at the moment that 6 = -
208. The point @ is moving on the line y = x with velocity 3 m/sec. Find the rate of
change of the following quantities at the moment in which @ is at the point (1, 1):
(a) the distance from @ to the origin,
(b) the distance from @ to the point R(2,0),
(c) the angle ZORQ where R is again the point R(2,0).
209. A point P is sliding on the parabola with equation y = 2. Its z-coordinate is
increasing at a constant rate of 2 feet /minute.
Find the rate of change of the following quantities at the moment that P is at (3,9):
(a) the distance from P to the origin,

(b) the area of the rectangle whose lower left corner is the origin and whose upper right
corner is P,

(c) the slope of the tangent to the parabola at P,
(d) the angle ZOPQ where @ is the point (0, 3).

210. A certain amount of gas is trapped in a cylinder with a piston. The ideal gas law
from thermodynamics says that if the cylinder is not heated, and if the piston moves
slowly, then one has

pV =CT

where p is the pressure in the gas, V is its volume, T its temperature (in degrees Kelvin)
and C' is a constant depending on the amount of gas trapped in the cylinder.

(a) If the pressure is 10psi (pounds per square inch), if the volume is 25inch?®, and if the
piston is moving so that the gas volume is expanding at a rate of 2inch® per minute, then
what is the rate of change of the pressure?

(b) The ideal gas law turns out to be only approximately true. A more accurate descrip-
tion of gases is given by van der Waals’ equation of state, which says that

a
(p+ﬁ)(V—b) =C
where a, b, C' are constants depending on the temperature and the amount and type of
gas in the cylinder.

Suppose that the cylinder contains fictitious gas for which one has a = 12 and b = 3.
Suppose that at some moment the volume of gas is 12in®, the pressure is 25psi and suppose
the gas is expanding at 2 inch® per minute. Then how fast is the pressure changing?
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Chapter 5

Graph Sketching and Max-Min
Problems

The signs of the first and second derivatives of a function tell us something about the
shape of its graph. In this chapter we learn how to find that information.

5.1 Tangent and Normal lines to a graph

The slope of the tangent the tangent to the graph of f at the point (a, f(a)) is

m = f'(a) (5.1)
and hence the equation for the tangent is
y = fla)+ f'(a)(z — a). (5.2)

The slope of the normal line to the graph is —1/m and thus one could write the equation

for the normal as
T —a

- fla)
When f’(a) = 0 the tangent is horizontal, and hence the normal is vertical. In this case

the equation for the normal cannot be written as in (5.3), but instead one gets the simpler
equation

(5.3)

y = f(a)

y = f(a).
Both cases are covered by this form of the equation for the normal
z=a+ f(a)(f(a) —y) (5.4)

Both (5.4) and (5.3) are formulas that you shouldn’t try to remember. It is easier to
remember that if the slope of the tangent is m = f’(a), then the slope of the normal is
—1/m.
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rise/run =

y=f(x)

rise/run = —i
T
—1

Figure 5.1: Why “slope of normal =
& y P slope of tangent

To refresh your knowledge of tangents and normals consider watching this (MTube by
atomi

5.2 The Intermediate Value Theorem

It is said that a function is continuous if you can draw its graph without taking your
pencil off the paper. A more precise version of this statement is as follows:

Theorem 5.2.1 (The Intermediate Value Theorem.). If f is a continuous function on
an interval @ < x < b, and if y is some number between f(a) and f(b), then there is a
number ¢ with a < ¢ < b such that f(c) = y.

Figure 5.2: The Intermediate Value Theorem says that a continuous function must attain any given
value y between f(a) and f(b) at least once. In this example there are three values of ¢ for which

f(¢) =y holds.
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5.2.1 Example — Square root of 2.

Consider the function f(z) = z?. Since f(1) < 2 and f(2) = 4 > 2 the intermediate
value theorem with a =1, b = 2, y = 2 tells us that there is a number ¢ between 1 and 2
such that f(c) = 2, i.e. for which ¢* = 2. So the theorem tells us that the square root of
2 exists.

5.2.2 Example — The equation 0 + sinf = 3.
Consider the function f(z) = = + sinz. It is a continuous function at all z, so from
f(0) = 0 and f(m) = 7 it follows that there is a number 6 between 0 and 7 such that

f(6) = w/2. In other words, the equation
0+ sinf = g (5.5)

has a solution § with 0 < 6 < 7/2. Unlike the previous example, where we knew the
solution was v/2, there is no simple formula for the solution to (5.5).

5.2.3 Example — Solving 1/x = 0.

If we apply the intermediate value theorem to the function f(z) = 1/z on the interval
la,b] = [—1,1], then we see that for any y between f(a) = f(—1) = —1 and f(b) =
f(1) =1 there is a number ¢ in the interval [—1,1] such that 1/c = y. For instance, we
could choose y = 0 (that’s between —1 and +1), and conclude that there is some ¢ with
—1<c¢<1land1l/c=0.

But there is no such ¢, because 1/c¢ is never zero! So we have done something wrong, and
the mistake we made is that we overlooked that our function f(z) = 1/x is not defined
on the whole interval —1 < x < 1 because it is not defined at x = 0. The moral: always
check the hypotheses of a theorem before you use it!

5.3 Finding sign changes of a function

The intermediate value theorem implies the following very useful fact.

Theorem 5.3.1. If f is continuous function on some interval a < z < b, and if f(z) # 0
for all  in this interval, then f(z) is either positive for all @ < x < b or else it is negative
for all a < x < 0.

Proof. The theorem says that there can’t be two numbers a < x; < x9 < bsuch that f(x;)
and f(z2) have opposite signs. If there were two such numbers then the intermediate value
theorem would imply that somewhere between z; and x5 there was a ¢ with f(c¢) = 0.
But we are assuming that f(c) # 0 whenever a < ¢ < b. [
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5.3.1 Example.

Consider
f(z) = (z —3)(z — 1)*(2z + 1)*.

The zeros of f (i.e. the solutions of f(z) = 0) are —1,1,3. These numbers split the real
line into four intervals

(_007_%)’ (_%’1)7 (173)7 (3700)'

Theorem 5.3.1 tells us that f(x) cannot change its sign in any of these intervals. For
instance, f(x) has the same sign for all z in the first interval (oo, —3). Now we choose
a number we like from this interval (e.g. —1) and find the sign of f(—1): f(—1) =
(—4)(—2)?(—3)? is positive. Therefore f(z) > 0 for all z in the interval (—oo, —1). In
the same we find

(z) >0 for z < —3

() <Ofor — <z <1
(x) <O0forl<z<3
f(z) >0 for z > 3.

/
flx
/

T

FELL

If you know all the zeroes of a continuous function, then this method allows you to decide
where the function is positive or negative. However, when the given function is factored
into easy functions, as in this example, there is a different way of finding the signs of f.
For each of the factors  — 3, (x — 1) and (2z + 1)3 it is easy to determine the sign, for
any given x. These signs can only change at a zero of the factor. Thus we have

e 1 — 3 is positive for x > 3 and negative for z < 3;
o (x —1)% is always positive (except at x = 1);
e (2z + 1)3 is positive for > —3 and negative for z < —3.

Multiplying these signs we get the same conclusions as above. We can summarize this
computation in the following diagram:

o x-3
|
|
+ o+ o+ o+ 4+ + o+ o+ o+ 4+ o+ 2
0 : (x=1)
! |
- - ! |
° + o+ +: o+ + D+ 4 (2X+1)3
| | !
- - - - - - _
ot N o+ o+ 4+ )
-1/2 1 3
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5.4 The Mean Value Theorem.

Theorem 5.4.1 (The Mean Value Theorem). If f is a differentiable function on the
interval @ < x < b, then there is some number ¢, with a < ¢ < b such that

EIUES (C]
Y
a C b t

Figure 5.3: According to the Mean Value Theorem there always is some number ¢ between a and
b such that the tangent to the graph of f is parallel to the line segment connecting the two points
(a, f(a)) and (b, f(b)). This is true for any choice of a and b; ¢ depends on a and b of course.

For further elucidation consider watching Youl® by The Organic Chemistry Tutor

5.5 Increasing and decreasing functions

Here are four very similar definitions — look closely to see how they differ.

e A function is called increasing if a < b implies f(a) < f(b) for all numbers a and
b in the domain of f.

e A function is called decreasing if a < b implies f(a) > f(b) for all numbers a and
b in the domain of f.

e The function f is called non-decreasing if a < b implies f(a) < f(b) for all
numbers a and b in the domain of f.
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e The function f is called non-increasing if a < b implies f(a) > f(b) for all
numbers a and b in the domain of f.

You can summarize these definitions as follows:

fis... if for all ¢ and b one has...

Increasing: a <b = f(a) < f(b)

Decreasing: a <b = f(a) > f(b
Non-increasing: a <b = f(a)
Non-decreasing: a <b = f(a)

The sign of the derivaitve of f tells you if f is increasing or not. More precisely:

Theorem 5.5.1. If a function is non-decreasing on an interval a < z < b then f'(z) >0
for all  in that interval.

If a function is non-increasing on an interval a < x < b then f'(z) < 0 for all  in that
interval.

Proof. For instance, if f is non-decreasing, then for any given x and any positive Ax one
has f(x + Az) > f(z) and hence

[z + Ax) — f(x)

> 0.
Az 20

Now let Az N\ 0 and you find that

> 0.

A _
o) = Alizrilof(er A:Ea): f ()

]

What about the converse, i.e. if you know the sign of f’ then what can you say about f?

Theorem 5.5.2. Suppose f is a differentiable function on an interval (a,b).
If f'(x) >0 for all a < x < b, then f is increasing.
If f'(x) <0 forall a <x <D, then f is decreasing.

Proof. We show that f’(z) > 0 for all = implies that f is increasing. Let 21 < x5 be two
numbers between a and b. Then the Mean Value Theorem implies that there is some ¢
between z; and x5 such that

i) = L= S,
2 — I
or
f(x2) = f(z1) = f(c) (22 — 21).
Since we know that f’(¢) > 0 and xs — x; > 0 it follows that f(x2) — f(x1) > 0, i.e.
f(x2) > f(21). O
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5.6 Examples

Armed with these theorems we can now split the graph of any function into increasing
and decreasing parts simply by computing the derivative f’(z) and finding out where
f'(x) > 0 and where f’(z) < 0 — i.e. we apply the method form the previous section to
f' rather than f.

5.6.1 example: the parabola y = 2.

The familiar graph of f(x) = z? consists of two parts, one decreasing and one increasing.

Yy

f'(x) <0 f'(x) >0

You can see this from the derivative which is

>0 f >0
flay=2e8” 0
<0 forz <.

Therefore the function f(z) = 2? is decreasing for r < 0 and increasing for x > 0.

5.6.2 example: the hyperbola y = 1/xz.

The derivative of the function f(z) = 1/z = 27! is f'(x) = —2 which is always negative.
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You would therefore think that this function is decreasing, or at least non-increasing: if
a < bthen 1/a > 1/b. But this isn’t true if you take a = —1 and b = 1:

1 1
a=—-1<1=b but —-=-1<1=-1
a b

The problem is that we used theorem 5.5.2, but it you carefully read that theorem then
you see that it applies to functions that are defined on an interval. The function
in this example, f(z) = 1/, is not defined on the interval —1 < x < 1 because it isn’t
defined at x = 0. That’s why you can’t conclude that the f(x) = 1/z is increasing from
r=—-1tox=+1.

On the other hand, the function is defined and differentiable on the interval 0 < x < oo,

so theorem 5.5.2 tells us that f(x) = 1/x is decreasing for > 0. This means, that as
long as x is positive, increasing = will decrease 1/z.

5.6.3 example: a cubic function.

Consider the function
y= f(r) =2 -2z
Its derivative is
f'(z) = 32% — 1.
We try to find out where f’ is positive, and where it is negative by factoring f'(x)
f(z) = 3(x2 — é) = 3(:18 + %\/5) (JC - %\/5)

from which you see that

f(z) >0 for x < —%\/g

f'(x) <0 for —%\/§<x<%\/§

f'(x) >0 for v > V3
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Therefore the function f is
increasing on (—oo, —%\/3), decreasing on (—%\/g, %\/g), increasing on (%\/3, oo)

At the two points z = j:%\/g one has f’(z) = 0 so there the tangent will be horizontal.
This leads us to the following picture of the graph of f:

@) >0 f@) <0 f@) >0
Vi 3

3 3

Figure 5.4: The graph of f(z) = 2% — z.

5.6.4 A function whose tangent turns up and down infinitely
often near the origin.

We end with a weird example. Somewhere in the mathematician’s zoo of curious functions
the following will be on exhibit. Consider the function

_ T4 2gin
flx) = 2+m sin —.
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Figure 5.5: Positive derivative at a point (x = 0) does not mean that the function is “increasing
1

near that point.” The slopes at the intersection points alternate between 5 — 7 and % + .

For z = 0 this formula is undefined, and we are free to define f(0) = 0. This makes
the function continuous at x = 0. In fact, this function is differentiable at x = 0, with
derivative given by
— f(0 1
f(0) = lim —f(x) 1(0) = lim 5 + zsin = =
x

x—0 €r — O z—0

DO | —

(To find the limit apply the sandwich theorem to —|z| < zsin T < |z|.)

So the slope of the tangent to the graph at the origin is positive (%), and one would think
that the function should be increasing near = = 0 (i.e. bigger z gives bigger f(x).) The
point of this example is that this turns out not to be true.

To explain why not, we must compute the derivative of this function for x # 0. It is
given by

1
f(z) = 5 Wcosg+ 27 sin — .

x
Now consider the sequence of intersection points Py, Ps, ... of the graph with the line
y = x/2. They are
1
Py, yk), Te =10 Yk = f(@).

For larger and larger k the points Py tend to the origin (the x coordinate is % which goes
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to 0 as k — oo). The slope of the tangent at P is given by

1 1
f(xy) = 5 Wcosl/lk + QE sinﬁ

2 .
= - —mcosknm+—sinkw
D) =~ ——

=(-1)* =0
B —% — 7~ —2.64159265358979 ... for k even
B % + 7~ +3.64159265358979. .. for k£ odd

In other words, along the sequence of points P the slope of the tangent flip-flops between

% — 7 and % + m, i.e. between a positive and a negative number.

In particular, the slope of the tangent at the odd intersection points is negative, and so
you would expect the function to be decreasing there. In other words we see that even
though the derivative at x = 0 of this function is positive, there are points
on the graph arbitrarily close to the origin where the tangent has negative
slope.

5.7 Maxima and Minima

A function has a global mazimum at some a in its domain if f(z) < f(a) for all other
z in the domain of f. Global maxima are sometimes also called “absolute maxima.”

A function has a local mazxzimum at some a in its domain if there is a small § > 0 such
that f(z) < f(a) for all x with a —§ < 2 < a + 0 which lie in the domain of f.

Every global maximum is a local maximum, but a local maximum doesn’t have to be a
global maximum.

loc max

loc min

___________________ ¢ \'/ @ s

abs min

Figure 5.6: A function defined on a closed interval [a,b] with one interior absolute minimum,
another interior local minimum, an interior local maximum, and two local maxima on the boundary,
one of which is in fact an absolute maximum.
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5.7.1 Where to find local maxima and minima.

Any z value for which f'(xz) = 0 is called a stationary point for the function f.

Theorem 5.7.1. Suppose f is a differentiable function on some interval [a, b].

Every local maximum or minimum of f is either one of the end points of the interval
[a, b], or else it is a stationary point for the function f.

Proof. Suppose that f has a local maximum at x and suppose that x is not a or b. By
assumption the left and right hand limits

Ax) — Ax) —
fuﬂzgg%fw+-§2 f@)wdf@ﬁ=gg;f@+'§i f(z)

both exist and they are equal.

Since f has a local maximum at x we have f(x + Az) — f(z) < 0if —0 < Az < 4. In
the first limit we also have Az < 0, so that

f(x+ Ax) — f(x)

li <0
Aglcr}lo Az -
Hence f'(x) <0.
In the second limit we have Ax > 0, so
i T80 = f@)
AzNO Ax

which implies f’'(z) > 0.
Thus we have shown that f/(z) < 0 and f’(z) > 0 at the same time. This can only be
true if f'(x) = 0. O

5.7.2 How to tell if a stationary point is a maximum, a mini-
mum, or neither.

If f'(¢) = 0 then c is a stationary point (by definition), and it might be local maximum
or a local minimum. You can tell what kind of stationary point ¢ is by looking at the
signs of f'(z) for x near c.

Theorem 5.7.2. If in some small interval (¢ — 6, c+¢) you have f'(z) < 0 for x < ¢ and
f'(x) > 0 for x > ¢ then f has a local minimum at z = c.

If in some small interval (¢ — §,c¢ + d) you have f'(z) > 0 for x < ¢ and f'(z) < 0 for
x > ¢ then f has a local maximum at x = c.

The reason is simple: if f increases to the left of ¢ and decreases to the right of ¢ then it
has a maximum at c¢. More precisely:

if f/(x) > 0 for x between ¢ —§ and ¢, then f is increasing for c—§ < x < ¢ and therefore
f(z) < f(e) for & between ¢ — § and c.

If in addition f’(z) < 0 for x > ¢ then f is decreasing for x between ¢ and ¢ + §, so that
f(z) < f(c) for those .

Combine these two facts and you get f(x) < f(c) forc—d§ <x < c+ 0.
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5.7.3 Example — local maxima and minima of f(z) = 2% — .

In §5.6.3 we had found that the function f(z) = 2® — x is decreasing when —oo < z <
—3+/3, and also when $4/3 < 2 < oo, while it is increasing when —3/3 < z < /3. Tt
follows that the function has a local minimum at # = —%./3, and a local maximum at

x = %\/3

Neither the local maximum nor the local minimum are global max or min since
lim f(x) =4oc0 and lim f(x) = —oc.
T——00 T—r00
5.7.4 A stationary point that is neither a maximum nor a min-
imum.

If you look for stationary points of the function f(z) = 23 you find that there’s only one,
namely z = 0. The derivative f’(z) = 32? does not change sign at = = 0, so the test in
Theorem 5.7.2 does not tell us anything.

And in fact, x = 0 is neither a local maximum nor a local minimum since f(z) < f(0)
for x < 0 and f(x) > 0 for z > 0.

Yy X

5.8 Must there always be a maximum?

Theorem 5.7.1 is very useful since it tells you how to find (local) maxima and minima.
The following theorem is also useful, but in a different way. It doesn’t say how to find
maxima or minima, but it tells you that they do exist, and hence that you are not wasting
your time trying to find a maximum or minimum.

Theorem 5.8.1. Let f be continuous function defined on the closed interval a < x <'b.
Then f attains its maximum and also its minimum somewhere in this interval. In other
words there exist real numbers ¢ and d such that

fle) < f(z) < f(d)

whenever a < x < b.
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The proof of this theorem requires a more careful definition of the real numbers than we
have given in Chapter 1, and we will take the theorem for granted.

5.9 Examples — functions with and without maxima
or minima

In the following three example we explore what can happen if some of the hypotheses in
Theorem 5.8.1 are not met.

5.9.1 Question:

Does the function

r for0<z<l1
f($)_{o for x = 1.

have a maximum on the interval 0 < x <17

min
—4

Figure 5.7: Does this function have a maximum?

5.9.2 Answer:
No. What would the maximal value be? Since

il/rrif(x) = 91:1}1%35 =1
The maximal value cannot be less than 1. On the other hand the function is never larger
than 1. So if there were a number a in the interval [0, 1] such that f(a) was the maximal
value of f, then we would have f(a) = 1. If you now search the interval for numbers a
with f(a) = 1, then you notice that such an a does not exist. Conclusion: this function
does mot attain its maximum on the interval [0, 1].

What about Theorem 5.8.17 That theorem only applies to continuous functions, and the
function f in this example is not continuous at x = 1. For at x = 1 one has

F(1) =0 # 1= lim f(z),

So all it takes for the Theorem to fail is that the function f be discontinuous at just one
point.
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5.9.3 Question:

Does the function

have a maximum or minimum?

max

e

Figure 5.8: Does this function have a minimum?

5.9.4 Answer:

The function has a maximum at x = 1, but it has no minimum.
Concerning the maximum: if z > 1 then f(z) = 1/2* < 1, while f(1) = 1. Hence
f(z) < f(1) for all x in the interval [1,00) and that is why f attains its maximum at
=1
If we look for a minimal value of f then we note that f(x) > 0 for all z in the interval
[1,00), and also that

lim f(z) =0,

T—r00

so that #f f attains a minimum at some a with 1 < a < oo, then the minimal value f(a)
must be zero. However, the equation f(a) = 0 has no solution — f does not attain its
minimum.

Why does Theorem 5.8.1 not apply?

In this example the function f is continuous on the whole interval [1, 00), but this interval
is not a closed interval, i.e. it is not of the form [a, b] (it does not include its endpoints).

5.10 General method for sketching the graph of a
function
Given a differentiable function f defined on some interval a < x < b, you can find the

increasing and decreasing parts of the graph, as well as all the local maxima and minima
by following this procedure:

1. find all solutions of f/(x) = 0 in the interval [a, b]: these are called the critical or
stationary points for f.
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2. find the sign of f’(z) at all other points

3. each stationary point at which f'(x) actually changes sign is a local maximum or
local minimum. Compute the function value f(x) at each stationary point.

4. compute the function values at the endpoints of the interval, i.e. compute f(a) and

().

5. the absolute maximum is attained at the stationary point or the boundary point
with the highest function value; the absolute minimum occurs at the boundary or
stationary point with the smallest function value.

If the interval is unbounded, i.e. if the function is defined for —oco < x < oo then you
can’t compute the values f(a) and f(b), but instead you should compute lim, 4., f(z).

5.10.1 Example — the graph of a rational function.

Let’s “sketch the graph” of the function

o=

By looking at the signs of numerator and denominator we see that

flz)>0for0<z <1
f(z) <0 for z < 0 and also for x > 1.

We compute the derivative of f

1—2r—2?
f,(l') =T 32
(1+2%)
Hence f’(z) = 0 holds if and only if
1-2r—2"=0

and the solutions to this quadratic equation are —1 4+ /2. These two roots will appear
several times and it will shorten our formulas if we abbreviate

A=-1-—2and B=—1+,/2.

To see if the derivative changes sign we factor the numerator and denominator. The
denominator is always positive, and the numerator is

—2?—2r+1=—(2"+20—1)=—(v — A)(z — B).

Therefore
<0 forz< A
f(#)X >0 forA<z<B
<0 forz>~RB

It follows that f is decreasing on the interval (—oo, A), increasing on the interval (A, B)
and decreasing again on the interval (B, o). Therefore
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A is a local minimum, and B is a local maximum.

Are these global maxima and minima?

A abs max

abs min
Figure 5.9: The graph of f(z) = (x — 22)/(1 + 2?)

Since we are dealing with an unbounded interval we must compute the limits of f(x) as
x — Fo00. You find

lim f(z) = lim f(z)=—1.
T—>00 T—r—00
Since f is decreasing between —oo and A, it follows that
flA) < f(x) < —1for —oco<a <A
Similarly, f is decreasing from B to +oo, so
—1< f(z) < f(=144/2) for B <2 < oo.
Between the two stationary points the function is increasing, so
f(=1—=/2) < f(z) < f(B) for A<z < B.

From this it follows that f(z) is the smallest it can be when x = A = —1 — /2 and at
its largest when z = B = —1 + 1/2: the local maximum and minimum which we found
are in fact a global maximum and minimum.

5.11 Convexity, Concavity and the Second Deriva-
tive

By definition, a function f is convex on some interval a < x < b if the line segment
connecting any pair of points on the graph lies above the piece of the graph between those
two points.

The function is called concawve if the line segment connecting any pair of points on the
graph lies below the piece of the graph between those two points.
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concave

convex A

neither convex nor concave

N \
Figure 5.10: If a graph is convex then all chords lie above the graph. If a graph is concave then
all chords lie below the graph.

Instead of “convex” and “concave” one often says “concave up” or “concave down” re-
spectively.
A point on the graph of f where f”(z) changes sign is called an inflection point.

Figure 5.11: At an inflection point the tangent crosses the graph.

You can use the second derivative to tell if a function is concave or convex.

Theorem 5.11.1. If a function f is convex on some interval a < x < b then f”(z) >0
for all x on that interval.

Theorem 5.11.2. If f’(z) > 0 for all z on some interval a < z < b then f is convex on
that interval.

Theorem 5.11.3. A function f is convex on some interval a < x < b if and only if the
derivative f’(z) is a nondecreasing function on that interval.

To gain further insight to convexity intervals and inflection points consider watching
Y@ by Brightstorm .
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5.11.1 Example — the cubic function f(r) = 23 — .

The second derivative of the function f(x) = 2® — z is

f"(z) = 6x

which is positive for z > 0 and negative for z < 0. Hence, in the graph in §5.6.3, the
origin is an inflection point, and the piece of the graph where x > 0 is convex, while the
piece where z < 0 is concave.

5.11.2 The second derivative test.

In §5.7.2 we saw how you can tell if a stationary point is a local maximum or minimum
by looking at the sign changes of f’(x). There is another way of distinguishing between
local maxima and minima which involves computing the second derivative.

Theorem 5.11.4. If ¢ is a stationary point for a function f, and if f”(c) < 0 then f has
a local maximum at z = c.

If f”(¢) > 0 then f has a local minimum at c.

The theorem doesn’t say what happens when f”(c) = 0. In that case you must go back
to checking the signs of the first derivative near the stationary point.

The basic reason why this theorem is true is that if ¢ is a stationary point with f”(¢) > 0
then “f’(x) is increasing near x = ¢” and hence f'(z) < 0 for x < ¢ and f'(x) > 0 for
x > c. So the function f is decreasing for x < ¢ and increasing for = > ¢, and therefore
it reaches a local minimum at x = c.

5.11.3 Example — that cubic function again.

Consider the function f(z) = z* — x from §5.6.3 and §5.11.1. We had found that this
function has two stationary points, namely at x = :l:%\/& By looking at the sign of
f'(x) = 32? — 1 we concluded that —3+/3 is a local maximum while +5+/3 is a local
minimum. Instead of looking at f’(z) we could also have computed f”(z) at © = +1/3
and applied the second derivative test. Here is how it goes:

Since f"(z) = 62 we have

f"(—3v/3) = —2¢/3 <0 and f"(3/3) =23 > 0.

Therefore f has a local maximum at —%\/3 and a local minimum at %\/3

5.11.4 When the second derivative test doesn’t work.

Usually the second derivative test will work, but sometimes a stationary point ¢ has
f"(c) = 0. In this case the second derivative test gives no information at all. The figure
below shows you the graphs of three functions, all three of which have a stationary point
at x = 0. In all three cases the second derivative vanishes at x = 0 so the second derivative
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test says nothing. As you can see, the stationary point can be a local maximum, a local
minimum, or neither.

y==x y=u y=-x

D
A 4
FanY
A 74

Figure 5.12: Three functions for which the second derivative test doesn't work.

5.12 Proofs of some of the theorems

5.12.1 Proof of the Mean Value Theorem.

Let m be the slope of the chord connecting the points (a, f(a)) and (b, f(b)), i.e.
) = f@)
b—a '’
and consider the function
9(x) = f(z) — fla) = m(z — a).
This function is continuous (since f is continuous), and g attains its maximum and
minimum at two numbers cpi, and Cpax-

There are now two possibilities: either at least one of ¢, Or cax is an interior point, or
else both cpin and ¢y are endpoints of the interval a < x < b.
Consider the first case: one of these two numbers is an interior point, i.e. if a < ¢, < b or
a < Cmax < b, then the derivative of g must vanish at ¢y, Or ¢pax. If one has ¢'(cmin) = 0,
then one has

0= ¢ (cmin) = f'(Cumin) — m,i.e. m = f'(cin)-
The definition of m implies that one gets

) _f(®) = fla)
flemn) = == ———
If ¢'(cmax) = 0 then one gets m = f’(cmax) and hence
, _f) = fla)
S (Cmax) = T bh—a

We are left with the remaining case, in which both ¢, and ¢y, are end points. To deal
with this case note that at the endpoints one has

g(a) =0 and g(b) = 0.

Thus the maximal and minimal values of g are both zero! This means that g(z) = 0 for
all z, and thus that ¢’(x) = 0 for all z. Therefore we get f'(x) = m for all x, and not
just for some c.
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5.12.2 Proof of Theorem 5.5.1.

If f is a non-decreasing function and if it is differentiable at some interior point a, then
we must show that f'(a) > 0.

Since f is non-decreasing, one has f(x) > f(a) for all > a. Hence one also has

f(@) — fla)

Tr —a

>0

for all x > a. Let z ™\, a, and you get

) — 1 L) = 1(@)

z\a Tr—a

> 0.

5.12.3 Proof of Theorem 5.5.2.

Suppose f is a differentiable function on an interval @ < x < b, and suppose that f/'(z) > 0
on that interval. We must show that f is non-decreasing on that interval, i.e. we have to
show that if x; < x5 are two numbers in the interval (a,b), then f(x1) > f(x3). To prove
this we use the Mean Value Theorem: given x; and x5 the Mean Value Theorem hands
us a number ¢ with x; < ¢ < x5, and
F(e) = f(x) — f(il?l)
Ty — X1
We don’t know where c is exactly, but it doesn’t matter because we do know that wherever
¢ is we have f'(c¢) > 0. Hence
f(z2) = f(z1)

To — T1

> 0.

Multiply with zo — 21 (which we are allowed to do since x > 1 so 5 — 1 > 0) and you
get
f(x2) — f(x1) >0,

as claimed.

5.13 Optimization

Often a problem can be phrased as
For which value of x in the interval a < x < b is f(x) the largest?

In other words you are given a function f on an interval [a, b] and you must find all global
maxima of f on this interval.

If the function is continuous then according to theorem 5.8.1 there always is at least one
x in the interval [a, b] which maximizes f(z).

If f is differentiable then we know what to do: any local maximum is either a stationary
point or one of the end points a and b. Therefore you can find the global maxima by
following this recipe:

111



1. Find all stationary points of f;
2. Compute f(x) at each stationary point you found in step (1);
3. Compute f(a) and f(b);

4. The global maxima are those stationary- or endpoints from steps (2) and (3) which
have the largest function value.

Usually there is only one global maximum, but sometimes there can be more.

If you have to minimize rather than mazimize a function, then you must look for global
minima. The same recipe works (of course you should look for the smallest function value
instead of the largest in step 4.)

The difficulty in optimization problems frequently lies not with the calculus part, but
rather with setting up the problem. Choosing which quantity to call x and finding the
function f is half the job.

5.13.1 Example — The rectangle with largest area and given
perimeter.

Which rectangle has the largest area, among all those rectangles for which the total length
of the sides is 17

Solution: If the sides of the rectangle have lengths = and y, then the total length of the
sides is
L=r+z+y+y=2(z+y)

and the area of the rectangle is
A =uzy.

So are asked to find the largest possible value of A = xy provided 2(z +y) = 1. The
lengths of the sides can also not be negative, so x and y must satisfy x > 0, y > 0.

We now want to turn this problem into a question of the form “maximize a function over
some interval.” The quantity which we are asked to maximize is A, but it depends on
two variables x and y instead of just one variable. However, the variables  and y are
not independent since we are only allowed to consider rectangles with L = 1. From this
equation we get

L=1= y=35—u.

Hence we must find the maximum of the quantity
A=uay = az(% — :1:)

The values of  which we are allowed to consider are only limited by the requirements
r>0and y>0,ie x < % So we end up with this problem:

— x) on the interval 0 < z < %

Find the mazimum of the function f(x) = x(%

112



Before we start computing anything we note that the function f is a polynomial so that
it is differentiable, and hence continuous, and also that the interval 0 < x < % is closed.
Therefore the theory guarantees that there is a maximum and our recipe will show us
where it is.

The derivative is given by
f/ (.1') = % - 23:7
and hence the only stationary point is z = }l. The function value at this point is
1y 171 1y _ 1
f=1G-9 =%

At the endpoints one has z = 0 or x = %, which corresponds to a rectangle one of whose
sides has length zero. The area of such rectangles is zero, and so this is not the maximal
value we are looking for.

We conclude that the largest area is attained by the rectangle whose sides have lengths

1
47

andy=1-1=1

L = 2 17 1

i.e. by a square with sides i.

5.14 PROBLEMS

TANGENTS AND NORMALS

211. Where does the normal to the graph of y = 22 at the point (1,1) intersect the z-axis?
7383

212. Where does the tangent to the graph of y = z? at the point (a,a?) intersect the
r-axis? 1383

213. Where does the normal to the graph of y = z? at the point (a, a?) intersect the x-axis?
1383

214. Where does the normal to the graph of y = \/x at the point (a,+/a) intersect the
x-axis? 1383
215. Does the graph of y = 2* — 222 4+ 2 have any horizontal tangents? If so, where?
Does the graph of the same function have any vertical tangents?
Does it have vertical normals?
Does it have horizontal normals?

216. At some point (a, f(a)) on the graph of f(z) = —1+ 2z — 2? the tangent to this graph
goes through the origin. Which point is it?

217. Find equations for the tangent and normal lines

to the curve ... at the point...
(a) y = 4z/(1 +2?) (1,2)
(b) y =8/(4+2%) (2,1)
(c) v* =2z +2° (2,2)
(d) zy =3 (1,3)
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218.

The function

satisfies f(—1) = —2 and f(+1) = +2, so, by the Intermediate Value Theorem, there
should be some value ¢ between —1 and +1 such that f(c) = 0. True or False? 1383

CRITICAL POINTS

219. What does the Intermediate Value Theorem say?
220. What does the Mean Value Theorem say?

221.

If f(a) =0 and f(b) =0 then there is a ¢ between a and b such that f'(c) = 0.
Show that this follows from the Mean Value Theorem. (Help! A proof! Relax: this one
is not difficult. Make a drawing of the situation, then read the Mean Value Theorem
again.)

222. What is a stationary point?
223. How can you tell if a local maximum is a global maximum?

224. If f"(a) = 0 then the graph of f has an inflection point at x = a. True or False?
7383

225. What is an inflection point? 1383

226. Give an example of a function for which f/(0) = 0 even though the function f has
neither a local maximum or a local minimum at x = 0.

227. Draw four graphs of functions, one for each of the following four combinations

f'>0and f">0 f'>0and f" <0
ff<O0and f">0 f'<0and f" <0

228. Which of the following combinations are possible:

f'(z) >0 and f"(x) =0 for all x
f'(x) =0and f"(z) > 0 for all =

1383
Sketch the graph of the following functions. To accomplish this you should

find where f, f" and f” are positive or negative
find all stationary points

decide which stationary points are local maxima or minima
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decide which local max/minima are in fact global max/minima

find all inflection points

)

find “horizontal asymptotes,” i.e. compute the limits lim, 1, f(x) when appropri-

ate.
229. y = 1 + 222 +383 240, = 1+a? 1384
1
230. y = ° — 422 +383 +1x
231, y— o'+ 27z £383 241 y=x+— 1384
232, y=a'— 27z £383 242, y—1— - +384
X
4 2
233. y=2r 420" =3 f384 243. y— 1+ 2% 4z 1384
o4 5.2
_ 5
235. y=2x2"+ 16z 7384 245. y = o 1384
236. y = 1" — 16z 1384 246. y=a'—22° + 22 1384
237. y = i : +384 247. y =1+ 22 +385
xr
938 - 1384 248. y=+v1—a? 1385
S g 249. y=V1+ a2 1385
x? 1
239. y = 384 250. y = 385
Y 1+ 22 f y 1+ x4 f

The following functions are periodic, i.e. they satisfy f(x+ L) = f(x) for all z, where the
constant L is called the period of the function. The graph of a periodic function repeats
itself indefinitely to the left and to the right. It therefore has infinitely many (local)
minima and maxima, and infinitely many inflections points. Sketch the graphs of the
following functions as in the previous problem, but only list those “interesting points”
that lie in the interval 0 < x < 2.

251. y =sinz 255. y = 4sinx +sin’x
2
252. y =sinz + cosx 1385 256. y=2cosw +cos"x
4
o ‘2 257, y=—7—
253. y =sinx +sin“x 1385 Y= 5 sing
254, y = 2sinz +sin’z 258. y = (2 + sin 95)2

Find the domain and sketch the graphs of each of the following functions

259. y = arcsinx 262. y = arctan(z?)
260. y = arctanx 263. y = 3arcsin(z) — 5z
261. y =2arctanx — x 264. y = 6arcsin(x) — 102°
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In the following two problems it is not possible to solve the equation f’'(z) = 0, but you
can tell something from the second derivative.

265. Show that the function 266. Show that the function
f(x) = zarctanz g(x) = xarcsinz
is convex. Then sketch the graph of f. is convex. Then sketch the graph of g.

For each of the following functions use the derivative to decide if they are increasing,
decreasing or neither on the indicated intervals

X 2
267. fle)=15 W0<z<o0 269. f(z) = i;_xx O<z<l
2 2
268. f(z) = 23+x l<z<oo 270. f(z) = 23—|—x 0<z <00
Ir° — X Ir° — X
OPTIMIZATION

271. By definition, the perimeter of a rectangle is the sum of the lengths of its four sides.
Which rectangle, of all those whose perimeter is 1, has the smallest area” Which one has
the largest area? 1385

272. Which rectangle of area 100in? minimizes its height plus two times its length? 1385

273. You have 1 yard of string from which you make a circular wedge with radius R and
opening angle . Which choice of # and R will give you the wedge with the largest area?
Which choice leads to the smallest area?

[A circular wedge is the figure consisting of two radii of a circle and the arc connecting

them. So the yard of string is used to form the two radii and the arc.] 1385
274.

(The lamp post problem)

In a street two lamp posts are 300 feet apart. The light intensity at a distance d from the
first lamp post is 1000/d?, the light intensity at distance d from the second (weaker) lamp
post is 125/d? (in both cases the light intensity is inversely proportional to the square of
the distance to the light source).

The combined light intensity is the sum of the two light intensities coming from both
lamp posts.
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(a) If you are in between the lamp posts, at distance x feet from the stronger light, then
give a formula for the combined light intensity coming from both lamp posts as a function
of z.

(b) What is the darkest spot between the two lights, i.e. where is the combined light
intensity the smallest?

1385

275. (a) You have a sheet of metal with area 100 in® from which you are to make a

cylindrical soup can. If r is the radius of the can and h its height, then which h and r
will give you the can with the largest volume?
(b) If instead of making a plain cylinder you replaced the flat top and bottom of the
cylinder with two spherical caps, then (using the same 100in? os sheet metal), then which
choice of radius and height of the cylinder give you the container with the largest volume?
(c) Suppose you only replace the top of the cylinder with a spherical cap, and leave the
bottom flat, then which choice of height and radius of the cylinder result in the largest
volume?

+386
276. A triangle has one vertex at the origin O(0, 0), another at the point A(2a,0) and the
third at (a,a/(1+ a®)). What are the largest and smallest areas this triangle can have if
0<a< o0?
277.
Queen Dido’s problem

According to tradition Dido was the founder and first Queen of Carthage. When she
arrived on the north coast of Africa (~800BC) the locals allowed her to take as much
land as could be enclosed with the hide of one ox. She cut the hide into thin strips and
put these together to form a length of 100 yards!.

land
A D P R water

(a) If Dido wanted a rectangular region, then how wide should she choose it to enclose as
much area as possible (the coastal edge of the boundary doesn’t count, so in this problem
the length AB + BC + C'D is 100 yards.)

(b) If Dido chose a region in the shape of an isosceles triangle PQR, then how wide
should she make it to maximize its area (again, don’t include the coast in the perimiter:
PQ + QR is 100 yards long, and PQ = QR.)

278. The product of two numbers z,y is 16. We know x > 1 and y > 1. What is the
greatest possible sum of the two numbers?

T made that number up. For the rest start at http://en.wikipedia.org/wiki/Dido
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279. What are the smallest and largest values that (sinz)(siny) can have if z4+y = 7 and
if x and y are both nonnegative?

280. What are the smallest and largest values that (cosx)(cosy) can have if x +y = 7 and
if x and y are both nonnegative?

281. (a) What are the smallest and largest values that tanz +tany can have if v +y = 7
and if x and y are both nonnegative?
(b) What are the smallest and largest values that tanz 4 2tany can have if x +y =

and if  and y are both nonnegative?

282. The cost per hour of fuel to run a locomotive is v?/25 dollars, where v is speed (in
miles per hour), and other costs are $100 per hour regardless of speed. What is the speed
that minimizes cost per mile ?

283.

Bronwyn is in need of coffee. Emily has a circular filter with 3 inch radius. She cuts out
a wedge and glues the two edges AC' and BC' together to make a conical filter to hold
the ground coffee. The volume V' of the coffee cone depends the angle 6 of the piece of

filter paper Emily made.
A=B
A ‘
> 7
fold & glue 7

(a) Find the volume in terms of the angle 6. (Hint: how long is the circular arc AB on
the left? How long is the circular top of the cone on the right? If you know that you can
find the radius AD = BD of the top of the cone, and also the height C'D of the cone.)

(b) Which angle § maximizes the volume V7
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Chapter 6

Implicit Derivatives and Related
Rate Problems

6.1 Differentiating implicitly defined functions

6.1.1 Implicitly defined functions

When we say that the function y = f(z) is implicitly defined by an equation in x and
y we mean that if we substitute f(z) for y in that equation, we get an equation (in x)
that holds for all values of z. In this case, we can find the derivative by differentiating
the equation and solving for the derivative.

6.1.2 Example

The function y = /1 — 22 is implicitly defined by the equation x* + y? = 1 (with the
additional condition that y > 0). We can find the derivative explicitly via

dy x
dr /11— 22
but it is easier to view z? + y? as a (constant) function of x, differentiate to get
d dy
0=—(2"+y*) =2z +2y——,
(@ +y7) =22+ 2y
and then solve to get
dy x x
dx y V1—22

6.1.3 Example

Here is a more complicated example. A differentiable function y = f(z) is implicitly
defined by the equation
y? + 3oy + To? — 17 = 0. (1)
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and satisfies f(1) = 2. To find f’(1) we can differentiate (1) and solve:
d d
2y 1322 4 3y + 140 =0
dx dz
(we used the product rule when we differentiated 3zy) so
dy  3y+ldx
de  2y+3z’

Then
_dy 3y + lx 6+ 14

- dx -

f(1) - :
29432 (o=  4+3

=1
Another (harder) way is to find an explicit formula for y by using the quadratic formula:
—~B+ VB2 —4AC -3z + /922 — 4(722 — 17)
y = =
2A 2

where A = 1, B = 3z, and C = Tz? — 17. Because f(1) = 2 we must take the plus sign
on the right and we see that y = f(x) is explicitly defined by

)= 3z + /922 — 4(72% — 17)  —3z + /68 — 1922 @
B 2 B 2

We can find f'(z) by differentiating (I):

dy 3 19z )
dz 2 268 — 1922
In even more complicated examples, it will be impossible (not merely difficult) to find a
formula for the implicitly defined function. Nonetheless we can still compute the deriva-

tive.

6.1.4 Equation for the tangent to a curve

A typical problem asks you to find an equation for the tangent line to a curve at a point
on the curve. For example, to find the equation for the tangent line to the graph of (¥)
at the point (z,y) = (1,2) we calculate the slope by implicit differentiation as before:

_dy 3y + 14z 20

m = = — .
A2 | (4 )—(1.2) 2y +37 |4 =12) 7

Then, since the value of the derivative at a point is the slope of the tangent line at that
point, the equation of the tangent line is

2
y=2—70(96—1)

where we have used the point slope equation
Yy =yo +m(x — xp)

for the equation of the line of slope m through the point (xg, yo).
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6.2 Inverse Functions

6.2.1 Vertical and Horizontal line tests for functions

A graph of an equation of form y = f(z) satisfies the Vertical Line Test: every vertical
line x = a intersects the graph in at most one point. If @ is in the domain of f, then the
vertical line x = a intersects the graph y = f(z) in the point P(a, f(a)); if a is not in
the domain of f, then the vertical line x = a does not intersect the graph y = f(z) at
all. A graph of an equation of form = = g(y) satisfies the Horizontal Line Test: every
horizontal line y = b intersects the graph in at most one point. If b is in the domain of g,
then the horizontal line y = b intersects the graph in the point P(g(b),b); if b is not in
the domain of g, then the line y = b does not intersect the graph = = g(y) at all.

Definition 6.2.1. When the graphs y = f(z) and x = g(y) are the same, i.e. when
y=flz) <= z=yg(y)
we say that f and g are inverse functions and write g = f~!. Thus
domain(f~!) = range(f), range(f~') = domain(f),

and
y=flx) = == [f"(y) (#)

for x in the domain of f and y in the range of f.

6.2.2 Example

The graph y = 22 does not satisfy the horizontal line test since the horizontal line y = 9
intersects the graph in the two points (—3,9) and (3,9). Therefore this graph cannot
be written in the form x = g(y). However, if we restrict the the domain to z > 0 the
resulting graph does have the form = = g(y):

For z > 0: y=1° < z=/y.
Let f(x) = «* (with the domain artificially restricted to > 0); then f~'(y) = \/y. Thus
f(3) =9s0 by (#) f~1(9) = 3. Hence f(f7'(9)) =9 and f~'(f(3)) = 3. In general:
Va? = Z, (\/y)Q =Y

for x > 0. But there is nothing special about this example:

6.2.3 Cancellation Equations

. If the graph y = f(z) satisfies the horizontal line test (so that the inverse function f~*
is defined) then

f(f@)=2 and  f(fT(y) =y
for z in domain(f) = range(f~') and y in range(f) = domain(f~1).
To see this choose z and let y = f(z). Then x = f~!(y) by Equation (#) in Defini-

tion 6.2.1. Substituting the former in the latter gives x = f~!(f(z)). Reversing the roles
of f and f~! proves the other cancellation equation.
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Theorem 6.2.1 (Inverse Function Theorem). Suppose that f and g are inverse
functions, that f is differentiable, and that f’(z) # 0 for all . Then g is differentiable

and
1

dw%:f@@D'

Proof: The fact that ¢ is differentiable is normally proved in more advanced courses like
Math 521. Assuming this we prove the formula for ¢'(y) as follows. By the Cancellation
Equations of 6.2.3 we have

fla(y)) =y
Differentiate with respect to y and use the Chain Rule to get

f'(9(y))g'(y) = 1.
Now divide both sides by f'(g(y)).

We can also write the Inverse Function Theorem as
1

(f Ny = W)

If we use this notation, we don’t need a name for the inverse function.

A handy way to summarize the formula (f~!)'(y) = 1/f(f~'(y)) from Theorem 6.2.1 is
with Leibniz notation:

de_ ()"
dy \dz)

For example, for z > 0 and y = 22 we have x = VY= y% SO

dy 5 dx 1 1
_— = X _——=— = —
dx ’ dy 2x 2y
in agreement with the power rule
d . dr 1 1.,
—y2 = ——= — = —y? .
dy dy 2y 2

6.2.4 Example
We find the inverse function g = f~! of the function
flz)=2"+1

and its derivative. Since y = 2® +1 <= 1z = (y — 1)¥/3, the inverse function is
g(y) = (y— 1" so
(y—1)*°
3 .
The following calculation confirms that ¢'(y) = 1/f'(g(y)):

J(y) =

1 1 1 1 (y—1)"2/3
o) 39w?  3(y-1)v3)* 3y—-D¥ 3
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6.2.5 Derivatives of the inverse trigonometric functions

One has
darcsinx 1
dx V1= a2
darccosx  —1
dz CV1—a?
darctanz 1
dx 1422

6.2.6 Inverse Trigonometric Functions

The trig functions sine, cosine, tangent etc. do not satisfy the horizontal line test: they
are periodic. The inverse trig functions are defined by artificially restricting the domain
of the corresponding trig function. When we do this we get

o If -5 <0< 7 then y =sinf 0 = sin™'(y)
e If0 <6 <7then z =cosf <= 0 =cos '(y)

o If -2 <6 <% thenu=tanf < 0 =tan"'(y).

Using these we can differentiate the inverse trig functions.
1

~ sin ()

— sin = —
dy Y /1—y2
PROOF: Let y = sinf so § = sin"!(y). Then
g (dy)l__ I 1 1
dy do cosf (/1 —sin26 /1 — 2
where we used the Pythogorean Theorem cos? @ + sin? 6 = 1.

1
V1—a?

PROOF: Let z = cosf so 6 = cos™(y). Then

—cos H(z) = —

o (dx\T' 1 1 1
dr  \ df ~ sinf \/1—C0829_ 1 — 12

where we used the Pythogorean Theorem as before.

™ tan!(u) =
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PROOF: Let u = tanf so 6 = tan~'(u). Then

o (a1 1 1
du  \ df ©sec?fd  1+tan?f 14+ u?
where we used the Pythogorean Theorem in the form 1 + tan?# = sec?f. This follows

from cos? 6 + sin?@ = 1 by dividing by cos?#. (Recall that the secant function is the
reciprocal of the cosine.)

6.2.7 Example

We calculate the derivative of y = sin /1 + 22 using the Chain Rule:

0 (=) ()
< _ 1+a22) [ ———) 2z
du (COS T QW X

6.3 Parametric Equations

Definition 6.3.1. A pair of equations

$:f(t), y:g(t)

assigns to each value of ¢ a corresponding point P(xz,y). The set of these points is called a
parametric curve and the equations are called parametric equations for the curve.
The variable ¢ is called the parameter and we say that the equations “trace out’
or parameterize the curve. Often ¢t has the interpretation of time and the parametric
equations describe the position of a moving particle at time ¢, i.e. the point corresponding
to to the parameter value t is the position of the particle at time ¢. Parameters other
than time are also used. The following examples show that sometimes (but not always)
we can eliminate the parameter and find an equation of the form

F(z,y)=0

which describes the curve.

6.3.1 Rectilinear Motion.

Here’s a parametric curve:
r=141, y =2+ 3t.

Both = and y are linear functions of time (i.e. the parameter t), so every time ¢ increases
by an amount At (every time At seconds go by) the first component x increases by At,
and the second component y increases by 3At¢. The point at P(z,y) moves horizontally
to the left with speed 1, and it moves vertically upwards with speed 3.

Which curve is traced out by these equations?  In this example we can find out by
eliminating the parameter, i.e. solving one of the two equations for ¢, and substituting
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the value of ¢ you find in the other equation. Here you can solve x = 1 + t for ¢, with
result t = x — 1. From there you find that

y=2+4+3t=2+3(x—1)=3z—1.

So for any ¢ the point P(x,y) is on the line y = 3z — 1. This particular parametric curve
traces out a straight line with equation y = 3x — 1, going from left to right.

6.3.2 Rectilinear Motion (More Generally).

Any constants xg, Yo, a, b such that either a # 0 or b # 0 give parametric equations
x = zo +alt —to), y=yo+b(t —to) (*)

which trace out the line

a(y — yo) = b(x — x0). (#)
(Both sides equal ab(t —tg).) At time t = ¢, the point P(x,y) is at Py(zo,yo). The values
corresponding to Example 6.3.1 are to =0, z0 =1, y0=2,a=1, b= 3.

6.3.3 Going back and forth on a straight line.

Consider
T =g+ asint, Yy = Yo + bsint.

At each moment in time the point whose motion is described by this parametric curve is
on the straight line with equation () as in Example 6.3.2. However, instead of moving
along the line from one end to the other, the point at P(z,y) keeps moving back and
forth along the line (x%) between the point P; corresponding to time ¢ = 7/2 and the
point P, corresponding to time t = 37/2.

6.3.4 Motion along a graph.

Let y = f(x) be some function of one variable (defined for  in some interval) and consider
the parametric curve given by

At any moment in time the point P(x,y) has x coordinate equal to ¢, and y = f(t) = f(z),
since x = t. So this parametric curve describes motion on the graph of y = f(z) in which
the horizontal coordinate increases at a constant rate.

125



6.3.5 The standard parametrization of a circle.

The parametric equations
xr=cosf, y=sinb

satisty
2% +y* = cos’H +sin’ 0 =1,

so that P(x,y) always lies on the unit circle. As 6 increases from —oo to +oo the point will
move around the circle, going around infinitely often. The point runs around the circle
in the counterclockwise direction, which is the mathematician’s favorite way of running
around in circles. The more general equations

xr =acost, y=bsint.

parameterize the ellipse

33'2 y2
StE=1

6.3.6 Another parametrization of a circle.

The equations
1—¢ 2t
r=—7 =—
112 YT 1

also parameterize the unit circle. To see this divide both sides of the identity*
(1= + (2t)* = (1 +¢%)?

by (1 + t?)? to get 2% + y* = 1. However the point Q(—1,0) is left out since y = 0 only
when t =0 and z =1 # —1 when ¢t = 0.

6.3.7 A parametrization of a hyperbola.

The functions L, L
1, cosh(t) = cre
2 2
are called the hyperbolic sine and hyperbolic cosine respectively. This is because the
equations

sinh(t) =

x = cosh(t), y = sinh(t),
parameterise the part of the hyperbola

T —y2:1

which to the right of the y-axis.

=224+ @22 =1 -2+t +4a2 =1+ 22+t = (1 + 12)?
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6.3.8 Slope of the tangent to a parametric curve

For parametric equations as in Definition 6.3.1 the chain rule gives

dy dy dx

At dz dt
so dividing gives the formula

dy  dy/dt

dr d/dt

We can use this formula to find the slope of the tangent line at a point on the curve. The
following example illustrates this.

6.3.9 Tangent to a circle

The point P <\/7§7 %) lies on the unit circle 22 + y?> = 1. This point corresponds to

the parameter value = 7/6 in the standard parameterization x = cosf, y = sin@ of
Example 6.3.5. Since

d d
d—z:—sine, d—gzcosﬁ
we get
dz L V3 dy 1
do 0=m/6 2"’ do 0=m/6 B 2’
and so the slope of the tangent line at P, is
dy dy/df 1
m = — = = ——.
dx b=n /6 dx/df b=r /6 V3

The point slope equation y = yo + m(z — x¢) for the tangent line is

11 V3
=———lx—-——].
YT /3 2
Let Py(xo,yo) be a point on a parametric curve corresponding to a parameter value t = ¢,
and let

dx

_dz _dy
Cdt

d b=
an 7

a

t=to t=to

Then
x =z + a(t — toy), Yy =yo + b(t —tp),

are parametric equations for the tangent line to the curve at F,. This is because the
point slope equation for the tangent line is

_ 4

= _ h =
Yy = yo + m(x — xy), where m= -

(z,y)=(z0,90)
and the slope is m = b/a. (See Example 6.3.2.)

Before tackling this chapter’s exercise problems the reader should consider watching
Y@ by 3BluelBrown .
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https://www.youtube.com/watch?v=qb40J4N1fa4

6.4 PROBLEMS

IMPLICIT DIFFERENTIATION

284. Check that the two formulas (1) and (§) for dy/dz in Example 6.1.3 are actually
equal.

285. Find an equation for the tangent line to the curve
oy —yt=1
at the point Py(2,3). Answer: y — 3 = I(z — 2)
286. The point P(1,2) lies on the curve
y® + 3xy + 72° — 45 = 0.
Find equations for the tangent line at P via the method of Example 6.1.4. In this case
you must use implicit differentiation: there is no analog of Equation ().

287. Find equations for the tangent line and the normal line to the curve 23 + y* = 9zy
at the point (z,y) = (2,4). Hint: The slope of the normal line is the negative reciprocal
of the slope of the tangent line.

INVERSE FUNCTIONS

288. Find the inverse function to f(z) = 3z + 6.
289. Find the inverse function to f(x) = 7 + 523. Then find its derivative.

290. Does the function f(z) = x® — = have an inverse? (i.e. does it satisfy the horizontal
line test?) Hint: Factor 2 — z and draw the graph.)

291. Find the inverse function to f(x) = v/1 — 22 where the domain is artificially restricted
to the interval 0 < z < 1. Draw a graph.

292. Let f(z) =2° +z and g(y) = f~'(y). What is f(1)? g(2)? f(2)? g(34)? Find f'(1),
d'(2), f'(2), and ¢’(34). Warning: Don’t try to find a formula for g(y).

293. Assume that y = f(x). With the information given below you can find dz/dy for
some values of y. Which values of y and what are the corresponding values of dx/dy?

fB)=4, f(B)=6, fB3)=1 [fH)=2 [f(6)=3 [(6)=4

294. (i) For which constants ¢ does is the function defined by

fz) = 3z for 0 <z < 1;
| 4z —c forl <z,

have an inverse function? (Hint: Horizontal Line Test.)

(if) For which value of ¢ is f(x) continuous? (iii) Draw a graph of y = f(x) for this value
of ¢. (iv) Find a formula (like the formula for f(x)) for the inverse function = = f~*(y).
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TRIGONOMETRIC FUNCTIONS

.. d d
295. Find pT] cot § and %cot (v).

296. Find dile secf and % sec”H(w).
297. Find the second derivative of tan# with respect to 6.
298. 1In each of the following, find dy/dx.
(a) y =sinz. (b)y=(sinz)™". (c)y=sin(z™"). (d)y=sin"'(x).

299. Consider the following functions
filz) =sin(a?), fo(z) = (sinz)?,  f3(z) = (sinz)z,

fa(z) =sin*z, fs5(z) = sin(sinx).

Which (if any) of these functions are the same? Evaluate the derivative of each of them.
Use parentheses to make absolutely certain the order of evaluation is unambiguous. When
you use the Chain Rule to differentiate a composition f o g say which function plays the
role of g and which plays the role of f.

300. Find the limit. Distinguish between an infinite limit and one which doesn’t exist.
(Give reasons!)

in 3 in 3 in 3
(a lir% IO (b) lim IO (c) lir(r)1+ o
T— X T—00 x r— €T
(d) Tim sin(3 + h) — sin 3‘ (e) Tim sinx —sin 3
h—0 h z—3 x—3

PARAMETRIC EQUATIONS
301. Confirm Example 6.3.7 by showing that
(cosh(t))*— (sinh(t))*= 1.
This is analogous to the Pythogorean Theorem

(Cos(t))2+ (sin(t)) = 1.

Also show that the hyperbolic sine and hyperbolic cosine are derivatives of each other.
Thus we have the analogous equations

d d

pr sinh(t) = cosh(?), g7 cosh(t) = sinh(?),
d . d .
pr sin(t) = cos(t), pr cos(t) = —sin(t).

Note the signs!
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302. The point PO(—%, %) lies on the unit circle 22 + y*> = 1. In the parameterization of
Example 6.3.6 it corresponds to the parameter value t = 2. Use this parameterization to

find the equation of the tangent line at this point. Then find the (same) equation using
y=+v1—a2
303. Consider the parameterization
1—¢? 2t
Xr = ——- =
1+ YT e

of the unit circlefrom 6.3.6. For which value of ¢ is (z,y) = (1,0)7  (0,1)? (0,—1)7?
(2,4)? <§, ‘/75)7 Is there a value of ¢ for which (z,y) = (—1,0)?

304. Let f(z) = v/(a+x)(b+ ) where a and b are constants. Show that

(b—a)’

Af(z)*

£(a) = -

305. Find all points on the parabola with the equation y = 22 — 1 such that the normal
line at the point goes through the origin.

306. (i) Find c so that function

r+c forz<l
Jw) = {3‘” forx > 1

is continuous. (ii) Draw a crude graph of the equation y = f(x). (iii) Give a formula
(like the above formula for f(x)) for the inverse function x = f~'(y) of the function

y = f().
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Chapter 7

Exponentials and Logarithms
(naturally)

In this chapter we first recall some facts about exponentials (z¥ with x > 0 and y
arbitrary): they should be familiar from algebra, or “precalculus.” What is new is perhaps
the definition of ¥ when y is not a fraction: e.g., 2%/* is the 4th root of the third power
of 2 (v/23), but what is 2v2?

Then we ask “what is the derivative of f(x) = a®?” The answer leads us to the famous
number e ~x 2.718 281 828 459 045 235 360 287 471 352 662 497 757 24709369995 - - - .

Finally, we compute the derivative of f(x) = log, z, and we look at things that “grow
exponentially.”

7.1 Exponents

Here we go over the definition of ¥ when x and y are arbitrary real numbers, with = > 0.

For any real number = and any positive integer n = 1,2, 3, ... one defines
n times
———
and, if x # 0,
r "= i
.Tn

One defines 2° = 1 for any z # 0.

To define 27/ for a general fraction § one must assume that the number x is positive.

One then defines
a1 = Y ap. (7.1)

This does not tell us how to define 2 is the exponent a is not a fraction. One can define
z® for irrational numbers a by taking limits. For example, to define 2v2, we look at the
sequence of numbers you get by truncating the decimal expansion of /2, i.e.

_ _ __ 14 _ __ 141 _ __ 1414
a]; = 1, A9 = 1.4 = 10° as = 1.41 = 1007 ay = 1.414 = 1000
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Each a, is a fraction, so that we know what 2% is, e.g. 2% = ""3/21414 Our definition
of 22 then is

2vV2 — lim 2%,

n—o0

i.e. we define 2v2 as the limit of the sequence of numbers
2’ 10/214’ 100/21417 1000/21414’ .

(See table 7.1.)

T 27
1.0000000000 | 2.000000000000
1.4000000000 | 2.639015821546
1.4100000000 | 2.657371628193
1.4140000000 | 2.66474965018/
1.4142000000 | 2.665119088532
1.4142100000 | 2.665137561794
1.4142130000 | 2.665143103798
1.4142135000 | 2.665144027466

Table 7.1: Approximating 2V2 Note that as x gets closer to v/2 the quantity 2% appears to
converge to some number. This limit is our definition of 2V2.

Here one ought to prove that this limit exists, and that its value does not depend on the
particular choice of numbers a, tending to a. We will not go into these details in this
course.

It is shown in precalculus texts that the exponential functions satisfy the following prop-
erties:

a
b +b x

xtx’ = v, =z (a:“)b = gz (7.2)

b

provided a and b are fractions. One can show that these properties still hold if a and b
are real numbers (not necessarily fractions.) Again, we won’t go through the proofs here.

Now instead of considering x* as a function of x we can pick a positive number a and
consider the function f(z) = a®. This function is defined for all real numbers x (as long
as the base a is positive.).

7.1.1 The trouble with powers of negative numbers.

The cube root of a negative number is well defined. For instance v/—8 = —2 because
(—2)® = —8. In view of the definition (7.1) of 27/ we can write this as

(-8t = () = VF = 2.
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But there is a problem: since 2 = £ you would think that (—8)%/% = (—8)'/%. However
our definition (7.1) tells us that

8)2/% — {/(—8) — V6L — +2.

Another example:
(—4)Y/? = /=4 is not defined

but, even though % = %7
2/4 vV (=4)2 = v/+16 = 2 is defined.

There are two ways out of this mess:

1. avoid taking fractional powers of negative numbers

2. when you compute x?/¢ first simplify the fraction by removing common divisors of
p and q.
The safest is just not to take fractional powers of negative numbers.

Given that fractional powers of negative numbers cause all these headaches it is not
surprising that we didn’t try to define z* for negative z if a is irrational. For example,
(—8)™ is not defined'.

7.2 Logarithms

Briefly, y = log,  is the inverse function to y = a”. This means that, by definition,
y=log, v <= x=ad".

In other words, log, x is the answer to the question “for which number y does one have
x = a¥?” The number log, z is called the logarithm with base a of x. In this
definition both a and x must be positive.

For instance,
2% =8, 22=y2 2= %

SO

log, 8 =3, logy(y/2) = %, logQ% =—1.
Also:
log,(—3) doesn’t exist
because there is no number y for which 2¥ = —3 (2¥ is always positive) and
log_42 doesn’t exist either
because y = log_5 2 would have to be some real number which satisfies (—3)Y = 2, and

we don’t take non-integer powers of negative numbers.

!There is a definition of (—8)™ which uses complex numbers. You will see later in the text
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7.3 Properties of logarithms

In general one has
log, a® = x, and a'*8* = z.

There is a subtle difference between these formulas: the first one holds for all real numbers
x, but the second only holds for > 0, since log, x doesn’t make sense for z < 0.

Again, one finds the following formulas in precalculus texts:

log, zy = log, = + log, y
x

log, — =log, z —log, y
Yy

log, ¥ = ylog, = (7.3)
1
log, z = -
log, a

They follow from (7.2).

7.4 Graphs of exponential functions and logarithms
Figure 7.1 shows the graphs of some exponential functions y = a® with different values

of a, and figure 7.2 shows the graphs of y = log,z, y = logg z, log, ¥, log; 3(x) and
y = log,,x. Can you tell which is which? (Yes, you can.)

(37 () (%) 100 30 o

—~
> [Ot
~—

3]

-3 -2 -1 0 1 2 3

Figure 7.1: The graphs of y = 2% 3% 10%,(4/5)*, (1/2)*,(1/3)%),(1/10)* and y = (5/4)*. Could
you have figured out which was which?
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logy ()

logs(x)

log,,(7)

Figure 7.2: Graphs of some logarithms. Each curve is the grap
values of @ > 0. Could you have figured out which was which?

From algebra/precalc recall:

log 1 (x)
logs (x)
logs (x)

h of a function y = log, = for various

If @ > 1 then f(z) = a” is an increasing function.

and

If 0 < a<1then f(z) = a” is a decreasing function.

In other words, for a > 1 it follows from x; < x5 that a™ < a*; if 0 < a < 1, then

r1 < x9 implies a* > a™.

7.5 The derivative of ¢ and the

To begin, we try to differentiate the function y = 2*:

4oz ' 21+Ar _ 9z
dx N Az—0 Az

=2 1
A:lcrilo Az

So if we assume that the limit

) 2A:): -1
A=A ¢
exists then we have

d2*

= (2%,
dx ¢
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On your calculator you can compute QAX;I for smaller and smaller values of Az, which

leads you to suspect that the limit actually exists, and that C' =~ 0.693 147 .... One can
in fact prove that the limit exists, but we will not do this here.

For a slick presentation on this topic consider watching You B by 3BluelBrown .

Once we know (7.4) we can compute the derivative of a® for any other positive number
a. To do this we write a = 2!°62¢, and hence

a® = (210g2 a)x — 2m~10g2 a

By the chain rule we therefore get
da® d2x-10g2 a

dx dx
_ (0 grlosza dz - logy a
dx

= (C'log, a) 2710822
= (C'logya) a®.

So the derivative of a” is just some constant times a”, the constant being C'log, a. This is
essentially our formula for the derivative of a®, but one can make the formula look nicer
by introducing a special number, namely, we define

287 _ 1
e = 2Y/¢ where C' = lim :
Ax—0 AJ}

One has
e~ 2.718 281 818 459 - .-

This number is special because if you set a = e, then

1
C'log, a = Clog, e = Clog, 2'/¢ = C-5=1

and therefore the derivative of the function y = e” is

i
dr

Read that again: the function e” is its own derivative!

er. (7.5)

The logarithm with base e is called the Natural Logarithm, and is written
Inz = log, .

Thus we have

et = g Ine” =z (7.6)

where the second formula holds for all real numbers x but the first one only makes sense
for z > 0.

For any positive number a we have a = €2, and also
a® = exlna'
By the chain rule you then get
da”
=a"lna 7.7
o (7.7)



https://www.youtube.com/watch?v=m2MIpDrF7Es

7.6 Derivatives of Logarithms

Since the natural logarithm is the inverse function of f(z) = e* we can find its derivative
by implicit differentiation. Here is the computation (which you should do yourself)

The function f(x) = log, = satisfies

W@ — g

Differentiate both sides, and use the chain rule on the left,
(Ina)a’@ f'(z) = 1.

Then solve for f'(z) to get
1

! —
Jw) = (Ina)af®"
Finally we remember that a/®) = z which gives us the derivative of a*

da® 1

dx rxlna

In particular, the natural logarithm has a very simple derivative, namely, since Ine = 1
we have

dlnz
dx

_ i (7.8)

7.7 Limits involving exponentials and logarithms

Theorem 7.7.1. Let r be any real number. Then, if a > 1,

lim z"a™* =0,
T—r00

1.e. .
.
lim — = 0.
r—o00 %

This theorem says that any exponential will beat any power of x as x — oo. For instance,
as z — oo both 1% and (1.001)* go to infinity, but

:L.lOOO

lim ———

=0
z—o0 (1.001)" ’
so, in the long run, for very large x, 1.001* will be much larger than 1000”.

T

Proof when a = e. We want to show lim,_,,, "¢~ = 0. To do this consider the function

f(z) = 2™ e ®. Tts derivative is

d r+1_—x
f(z) = @ c y ° - (r+1)a" —a™ e =(r+1—xz)a"e "
x

137



Therefore f'(x) < 0 for x > r + 1, i.e. f(x) is decreasing for x > r + 1. It follows that
flx) < f(r+1)forallz>r+1, ie.

e < (r4+ 1) e Y for o > 41

Divide by z, abbreviate A = (r + 1)"*1e=("+1) and we get

A
O<aze®< —forallz >r+1.
T

T

The Sandwich Theorem implies that lim,_,., x"e™® = 0, which is what we had promised

to show.
O]

Here are some related limits:

T

a>1 = lim —=oc0 (D.N.E.)
r—oo T
1
m>0 = lim — =0

r—o0 M

m>0 = limz™lnz =0
x—0

The second limit says that even though Inx becomes infinitely large as x* — oo, it is
always much less than any power 2™ with m > 0 real. To prove it you set z = €' and
then ¢t = s/m, which leads to

Inz ,—et .. t t=s/m 1 . s

lim — "= lim — m— = 0.
r—o0 M t—oo Mt m t—oo es

The third limit follows from the second by substituting x = 1/y and using lni =—Inx.

7.8 Exponential growth and decay

A quantity X which depends on time ¢ is said to grow or decay exponentially if it is given
by

X (t) = XoeM. (7.9)
The constant X is the value of X (¢) at time ¢ = 0 (sometimes called “the initial value
of X7).

The derivative of an exponentially growing quantity, i.e. its rate of change with time, is
given by X'(t) = Xg ke* so that

dX(t)
— =kX(1). 7.10
Y kx) (710
In words, for an exponentially growing quantity the rate of change is always proportional
to the quantity itself. The proportionality constant is k and is sometimes called “the

relative growth rate.”
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This property of exponential functions completely describes them, by which I mean that
any function which satisfies (7.10) automatically satisfies (7.9). To see that this is true,
suppose you have a function X (¢) for which X'(t) = kX (¢) holds at all times t. Then

dX (t)e kt de ® dX(t) _,,
axttle — _ x4
df R T

= —kX(t)e ™ + X'(t)e*
— (X'(t) — kX (B)e
=0.

It follows that X (t)e™** does not depend on ¢. At ¢ = 0 one has
X(t)e™ = X(0)e’ = X,
and therefore we have
X(t)e ™ = X, for all t.
Multiply with e** and we end up with

X(t) = XoeM.

7.8.1 Half time and doubling time.
If X(t) = Xoekt then one has
X(t+T) = X" = Xkt = T X ().

In words, after time 7" goes by an exponentially growing (decaying) quantity changes by
a factor e*T. If k > 0, so that the quantity is actually growing, then one calls

B In2

T
k

1

the doubling time for X because X (t) changes by a factor e’ = e"? = 2 every T time

units: X (¢) doubles every T' time units.
If £ <0 then X (t) is decaying and one calls

B In2

y —
—k

the half life because X (t) is reduced by a factor efT = ¢=122 = % every T' time units.

To see this concept in action consider watching You B by 3BluelBrown on the Covid 19
outbreak.
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https://www.youtube.com/watch?v=Kas0tIxDvrg&list=RDCMUCYO_jab_esuFRV4b17AJtAw&index=16

7.8.2 Determining X, and k.

The general exponential growth/decay function (7.9) contains only two constants, X
and k, and if you know the values of X(¢) at two different times then you can compute
these constants.

Suppose that you know
X1 = X(tl) and X2 = X(tg)

Then we have
XoeM = X, and Xy = X,et2

in which tq,%9, X1, X5 are given and k£ and X are unknown. One first finds &k from

Xl Xo@ktl k(tl—tg) X1
S R L s It (-1t
X5 X()eth ¢ t X5 ( 2)
which implies
L — lIle — IIIXQ
o ti—ty

Once you have computed k you can find X, from

X X1 Xy
0— ektl - eth.

(both expressions should give the same result.)

7.9 PROBLEMS

GRAPHS OF EXP AND LOG

Sketch the graphs of the following functions.

Hint: for some of these you have to solve something like e* — 3e3* 4 ¢* = 0, then call
w = €%, and you get a polynomial equation for w, namely w* — 3w? + w = 0.

307. y=¢" 316. y=¢"?— ¢
308. y=¢" 317. y=Inx
309. Y = e’ + 6_23: T386 318. y = In l
310. y =¥ —4¢ 386 v
yoe e f 319. y—clnz
e
311. y = -1
YT 1te 320. y=— (0<zx<oo,x#1)
97 Inz
312. y = = 2
A 321. y=(Inz)* (x>0)
_ |
313. y = e 322. y= 2 (z>0)
x
314. y = ze /4 T
x
315. y = 2% t? 323. y=1In 11— 2 (lz[ <1)
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324.
325.
326.
327.

yzln(1+x2)
y=In(z>—-3z+2) (z>2)
y=Incosz (|z] < %)

The function f(x) = e~ plays a cen-

tral in statistics and its graph is called
the bell curve (because of its shape).
Sketch the graph of f.

328.

Sketch the part of the graph of the

function

f@)=es

with z > 0.
Find the limits

lim /() and lim f(x)

N0 " T—00

where n can be any positive integer (hint:
substitute x = ...7)

329.

A damped oscillation is a function

of the form

f(x) =e @ cosbr or f(x) =e ““sinbx

where a and b are constants.

Sketch the graph of f(z) = e *sin10x
(i.e. find zeroes, local max and mins, in-
flection points) and draw (with pencil
on paper) the piece of the graph with
0<z<2rm.

This function has many local maxima
and minima. What s the ratio between
the function values at two consecutive lo-
cal mazima? (Hint: the answer does not
depend on which pair of consecutive local
maxima you consider.)

330. Find the inflection points on the

graph of f(z) = (1+z)Inz (z > 0).

331. (a) If x is large, which is bigger: 2*

or x2?

(b) The graphs of f(z) = z* and g(x) =
27 intersect at x = 2 (since 22 = 2%). How
many more intersections do these graphs
have (with —oco < z < 00)?

LIMITS OF EXP AND LOG FUNCTIONS.

Find the following limits.

332.

333.

334.

335.

336.

337.

MISCELLANEOUS PROBLEMS

344.

et —1
lim
z—o00 T + 1
et — g2
lim

z—o0 et + x
x

lim
e* — x?
lim ——
z—00 2T 4 7T
e T 671‘/2
lim —————
T—00 et +1

. Vaxtet
hm —_—

00 €27 + x

Find the tenth derivative of ze®.

340. lim

eve

z—00 /% 4 1

338. lim

339. lim In(l1+2z)—Inx

T—00

Inz

z—00 1N 12

341. limxlnzx

z—0
Inz
z—00 /T +Inx

Inz
=0 /T +Inz

342. lim

343. lim



345. For which real number z is 2* — 3” the largest?

. da® dz® d(x®)*
346. Find T , and .

347. Let y = (x 4+ 1)*(z + 3)*(z +5)° and u = Iny. Find du/dx.
Hint: Use the fact that In converts multiplication to addition before you differentiate. It
will simplify the calculation.

. (Hint: 2 =¢€".)

348. After 3 days a sample of radon-222 decayed to 58% of its original amount.
(a) What is the half life of radon-2227
(b) How long would it take the sample to decay to 10% of its original amount?

349. Polonium-210 has a half life of 140 days.
(a) If a sample has a mass of 200 mg find a formula for the mass that remains after ¢
days.
(b) Find the mass after 100 days.
(c) When will the mass be reduced to 10 mg?
(d) Sketch the graph of the mass as a function of time.

350. Current agricultural experts believe that the world’s farms can feed about 10 billion
people. The 1950 world population was 2.517 billion and the 1992 world population was
5.4 billion. When can we expect to run out of food?

351. The ACME company runs two ads on Sunday mornings. One says that “when this
baby is old enough to vote, the world will have one billion new mouths to feed” and the
other says “in thirty six years, the world will have to set eight billion places at the table.”
What does ACMFE think the population of the world is at present? How fast does ACME
think the population is increasing? Use units of billions of people so you can write 8
instead of 8,000,000,000. (Hint: 36 = 2 x 18.)

352. The population of California grows exponentially at an instantaneous rate of 2% per
year. The population of California on January 1, 2000 was 20,000,000.
(a) Write a formula for the population N(t) of California t years after January 1, 2000.

(b) Each Californian consumes pizzas at the rate of 70 pizzas per year. At what rate is
California consuming pizzas t years after 19907

(c) How many pizzas were consumed in California from January 1, 2005 to January 1,
20097
353. The population of the country of Farfaraway grows exponentially.

(a) If its population in the year 1980 was 1,980,000 and its population in the year 1990
was 1,990,000, what is its population in the year 20007

(b) How long will it take the population to double? (Your answer may be expressed in
terms of exponentials and natural logarithms.)
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354. The hyperbolic functions are defined by

. et —e "
sinhz = 5 ,
et +e "
coshx = 5
sinh z
tanhx =
coshzx

(a) Prove the following identities

cosh?z —sinh?x =1
cosh 2z = cosh? x + sinh? x

sinh 22 = 2 sinh x cosh .

(b) Show that

dsinh x
= cosh x,
dx
d
cosh x _ sinhaz,
dx
dtanh z B 1
dr  cosh’z’

(c) Sketch the graphs of the three hyperbolic functions.
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Chapter 8

The Integral

In this chapter we define the integral of a function on some interval [a,b]. The most
common interpretation of the integral is in terms of the area under the graph of the given
function, so that is where we begin.

8.1 Area under a Graph

Figure 8.1: area under a graph

Let f be a function which is defined on some interval a < x < b and assume it is positive,
i.e. assume that its graph lies above the x axis. How large is the area of the region caught
between the x axis, the graph of y = f(z) and the vertical lines y = a and y = b?

You can try to compute this area by approximating the region with many thin rectangles.
Look at figure 8.2 before you read on. To make the approximating region you choose a
partition of the interval [a, b], i.e. you pick numbers z; < .-+ < z,, with

Aa=To<T1 <Xy <+ < Tp_1 <z, =>0
These numbers split the interval [a, b] into n sub-intervals
[xo,z1], [x1,22], ..., [Tn_1,%n]
whose lengths are

Ary =x1 —x9, Ax9o=19—121, ..., AX,=1T,— Tp_1.
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In each interval we choose a point ¢, i.e. in the first interval we choose z¢o < ¢; < 7, in
the second interval we choose x1 < ¢y < 9, ..., and in the last interval we choose some
number z,_1 < ¢, < x,. See figure 8.2.

We then define n rectangles: the base of the k'™ rectangle is the interval [z)_;, z%] on the
x-axis, while its height is f(cx) (here k can be any integer from 1 to n.)

The area of the k' rectangle is of course the product of its height and width, i.e. its area
is f(cx)Axy. Adding these we see that the total area of the rectangles is

R = f(CI)A:EI + f(CQ)AxQ +--+ f(cn)Axn (81)
This kind of sum is called a Riemann sum.

N

N\
N

a b

Figure 8.2: TOP: A Riemann sum in which the interval a < z < b has been cut up into ten
smaller intervals. In each of those intervals a point ¢; has been chosen at random, and the resulting
rectangles with heights f(c1), ..., f(cg) were drawn. The total area under the graph of the function
is roughly equal to the total area of the rectangles. BOTTOM: Refining the partition. After adding
more partition points the combined area of the rectangles will be a better approximation of the area
under the graph of the function f.

If the partition is sufficiently fine then one would expect this sum, i.e. the total area
of all rectangles to be a good approximation of the area of the region under the graph.
Replacing the partition by a finer partition, with more division points, should improve
the approximation. So you would expect the area to be the limit of Riemann-sums like

R “as the partition becomes finer and finer.” A precise formulation of the definition goes
like this:
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Definition 8.1.1. If f is a function defined on an interval [a, b], then we say that

[ e =1,

i.e. the integral of “f(z) from x = a to b” equals I, if for every € > 0 one can find a 6 > 0
such that
fla)Azy + f(ea)Azg + -+ + f(cn) Az, — | <€

holds for every partition all of whose intervals have length Ax; < 6.

8.2 When f changes its sign

If the function f is not necessarily positive everywhere in the interval a < x < b, then we
still define the integral in exactly the same way: as a limit of Riemann sums whose mesh
size becomes smaller and smaller. However the interpretation of the integral as “the area
of the region between the graph and the z-axis” has a twist to it.

Figure 8.3: lllustrating a Riemann sum for a function whose sign changes. Always remember that
areas are positive numbers. The Riemann-sum corresponding to this picture is the total area of the
rectangles above the z-axis minus the total area of the rectangles below the x-axis.

Let f be some function on an interval a < x < b, and form the Riemann sum
R = f(c1))Azy + f(c2)Axg + - + f(cn)Azy

that goes with some partition, and some choice of c.

When f can be positive or negative, then the terms in the Riemann sum can also be posi-
tive or negative. If f(c) > 0 then the quantity f(cx)Axy is the area of the corresponding
rectangle, but if f(c;) < 0 then f(c;)Axy is a negative number, namely minus the area
of the corresponding rectangle. The Riemann sum is therefore the area of the rectangles
above the z-axis minus the area below the axis and above the graph.

Taking the limit over finer and finer partitions, we conclude that

b J(@)de = area above the x-axis, below the graph
a ~ minus the area below the z-axis, above the graph.
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8.3 The Fundamental Theorem of Calculus

The reader may want to listen to this You B by 3BluelBrown before continuing with
this section.

Definition 8.3.1. A function F' is called an antiderivative of f on the interval [a, b] if
one has F'(z) = f(x) for all z with a < z <.

For instance, F/(z) = $z? is an antiderivative of f(z) =z, but so is G(z) = $2? + 2008.

Theorem 8.3.1. If f is a function whose integral fab f(x)dx exists, and if F' is an an-
tiderivative of f on the interval [a, b], then one has

/ f(z)dz = F(b) — F(a). (8.2)

Because of this theorem the expression on the right appears so often that various abbre-
viations have been invented. We will abbreviate

8.3.1 Terminology.

In the integral

/a ’ Ha) de

the numbers a and b are called the bounds of the integral, the function f(x) which is being
integrated is called the integrand, and the variable x is integration variable.

The integration variable is a dummy variable. If you systematically replace it with another
variable, the resulting integral will still be the same. For instance,

[ =[], =
and if you replace x by ¢ you still get
! 1
/0 otdp = [30°] = 5

Another way to appreciate that the integration variable is a dummy variable is to look
at the Fundamental Theorem again:

/ f(z) de = F(b) — F(a).

The right hand side tells you that the value of the integral depends on a and b, and has
absolutely nothing to do with the variable x.
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8.4 The indefinite integral

The fundamental theorem tells us that in order to compute the integral of some function
f over an interval [a, b] you should first find an antiderivative F' of f. In practice, much
of the effort required to find an integral goes into finding the antiderivative. In order to
simplify the computation of the integral

b
/ f(z)dx = F(b) — F(a) (8.3)

the following notation is commonly used for the antiderivative:
Fla) = / f(z)dz. (8.4)

For instance,
1
/:U2 dx:§x3, /sin5x da::—%cosm", etc...

The integral which appears here does not have the integration bounds a and b. It is
called an indefinite integral, as opposed to the integral in (10.1) which is called a
definite integral. You use the indefinite integral if you expect the computation of the
antiderivative to be a lengthy affair, and you do not want to write the integration bounds
a and b all the time.

It is important to distinguish between the two kinds of integrals. Here is a list of differ-
ences:

INDEFINITE INTEGRAL

DEFINITE INTEGRAL

ff(x)dx is a function of z.

By definition [ f(z)dx is any
function of x whose derivative is

().

x is not a dummy variable, for
example, [2zdr = 2%+ C and
[ 2tdt = t* + C are functions
of different variables, so they are
not equal.

f;f(x)dx is a number.

fabf(x)dx was defined in terms
of Riemann sums and can be
interpreted as “area under the
graph of y = f(x)", at least
when f(z) > 0.

x is a dummy variable, for exam-
ple, fol 2xdr = 1, and fol 2tdt =
1,50 [ 2zdx = [} 2tdt.

8.4.1 You can always check the answer.

Suppose you want to find an antiderivative of a given function f(z) and after a long and
messy computation which you don’t really trust you get an “answer”, F(z). You can
then throw away the dubious computation and differentiate the F'(z) you had found. If
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F'(z) turns out to be equal to f(z), then your F'(x) is indeed an antiderivative and your
computation isn’t important anymore.

For example, suppose that we want to find f Inx dx. Emily’s cousin Jesse says it might
be F(x) = xlnxz — z. Let’s see if he’s right:

1
i(xlnx—x):m-—+1-lnx—1:1nx.
T

dz

Who knows how Jesse thought of this!, but it doesn’t matter: he’s right! We now know
that [Inzde = xlnz —a + C.

8.4.2 About “+(C”.

Let f(z) be a function defined on some interval a < x < b. If F(z) is an antiderivative of
f(x) on this interval, then for any constant C' the function F(x) = F(z) + C will also be
an antiderivative of f(z). So one given function f(x) has many different antiderivatives,
obtained by adding different constants to one given antiderivative.

Theorem 8.4.1. If Fi(z) and F,(z) are antiderivatives of the same function f(x) on
some interval a < z < b, then there is a constant C' such that Fy(x) = Fy(z) + C.

Proof. Consider the difference G(x) = Fi(z) — Fy(x). Then G'(z) = F|(x) — Fi(x) =
f(z) — f(x) = 0, so that G(z) must be constant. Hence Fi(x) — Fy(z) = C for some
constant. [

It follows that there is some ambiguity in the notation [ f(z)dz. Two functions F(z)
and Fy(x) can both equal [ f(z)dz without equaling each other. When this happens,
they (F; and F5) differ by a constant. This can sometimes lead to confusing situations,
e.g. you can check that

/ZSinxcos:cdx = sin’x
/ZSinxcosxdx = —cos’x
are both correct. (Just differentiate the two functions sin?x and — cos?z!) These two

answers look different until you realize that because of the trig identity sin® x +cos?z = 1
they really only differ by a constant: sin?z = — cos®z + 1.

To avoid this kind of confusion we
will from now on never forget to in-
clude the “arbitrary constant +C” in
our answer when we compute an an-
tiderivative.

Table 8.1 lists a number of antiderivatives which you should know. All of these integrals
should be familiar from the differentiation rules we have learned so far, except for for
the integrals of tan x and of @ You can check those by differentiation (using In§ =
Ina — In b simplifies things a bit).

'He took math and learned to integrate by parts.
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InJrl
/x"dx—n_i_l—i-C' for all n # —1
1
/ —dr=Inlz|+C (Note the absolute values)
x
/ex de =e"+C
T a* ) : T zlna
a"dr =—+C (don’t memorize: use a® = e* ™)
Ina

sinzxdxr = —cosz + C

tanxdr = —In|cosz| + C (Note the absolute values)

/cosxdz =sinzg + C

1
/ dr = arctanz + C
14+ 22

arcsinx + C

1
= dr =
/\/1—1:2 ‘

The following integral is also useful, but not as important as the ones above:

dz 11 1—i—sin:1r;+cf 7T< <7r
=—ln——— r — — —.
Ccos & 2 1-—sinx © 2 v 2

Table 8.1: The list of the standard integrals everyone should know

8.5 Properties of the Integral

Just as we had a list of properties for the limits and derivatives of sums and products of
functions, the integral has similar properties.

Suppose we have two functions f(z) and g(z) with antiderivatives F'(z) and G(x), re-
spectively. Then we know that

L{P@) + 0} = Fa) +C(a) = [(2) + o),

in words, F'+ (G is an antiderivative of f + ¢, which we can write as

/{f(x)+g(x)}d:r:/f(x) d$+/g($) da. (8.5)
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Similarly, L (cF(z)) = cF'(z) = cf(z) implies that

/cf(x) dx:c/f(x) dx (8.6)

if ¢ is a constant.

These properties imply analogous properties for the definite integral. For any pair of
functions on an interval [a, b] one has

tl%f@)+9uﬂdxzileﬂxﬂm+l£1ﬂ@dn (8.7)

and for any function f and constant ¢ one has

/a ’ cf(z)dz = c / b f(x)dz. (8.8)

Definite integrals have one other property for which there is no analog in indefinite in-
tegrals: if you split the interval of integration into two parts, then the integral over the
whole is the sum of the integrals over the parts. The following theorem says it more
precisely.

Theorem 8.5.1. Given a < ¢ < b, and a function on the interval [a, b] then

/abf(x)dx - /acf(m)dx—i— /be(m)dx. (8.9)

Proof. Let F' be an antiderivative of f. Then

c b
/f(x)dx:F(c)—F(a) and/f(x)dx:F(b)—F(a),

so that
b
[ rade=F )~ Flo
=F(b) — F(c)+ F(c) — F(a)
c b
_ / @)z + / F(w)de.
O

So far we have always assumed theat a < b in all indefinitie integrals ff .... The funda-

mental theorem suggests that when b < a, we should define the integral as

/ f(z)dz = F(b) — F(a) = —(F(a) — F(b)) = — /ba f(z)dz. (8.10)

0 1
/xdx:—/ rdr = —
1 0
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8.6 The definite integral as a function of its integra-
tion bounds

Consider the expression

I:/ t2 dt.
0

What does I depend on? To see this, you calculate the integral and you find

1= [ = La® — 10 =

3 T .

1
3
So the integral depends on z. It does not depend on ¢, since ¢ is a “dummy variable” (see
§8.3.1 where we already discussed this point.)

In this way you can use integrals to define new functions. For instance, we could define

I(x) = / t2dt,
0

which would be a roundabout way of defining the function I(z) = 23/3. Again, since ¢ is
a dummy variable we can replace it by any other variable we like. Thus

[(:U):/Ox&2da

1
3
The previous example does not define a new function (I(x) = x3/3). An example of a

new function defined by an integral is the “error-function” from statistics. It is given by

defines the same function (namely, I(z) = z2°).

of 2 [T _
erf(x) d:fﬁ/() e dt, (8.11)

so erf(x) is the area of the shaded region in figure 8.4.

Figure 8.4: Definition of the Error function.

The integral in (8.11) cannot be computed in terms of the standard functions (square
and higher roots, sine, cosine, exponential and logarithms). Since the integral in (8.11)
occurs very often in statistics (in relation with the so-called normal distribution) it has
been given a name, namely, “erf(z)”.
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How do you differentiate a function that is defined by an integral? The answer is simple,
for if f(z) = F'(x) then the fundamental theorem says that

| 10 dt=F@) - F),
and therefore P J
= | @y de = £{P@) — P} = P = 1)
ie.
d xX
= | = s,
A similar calculation gives you

b
= [ 1w a ==t

So what is the derivative of the error function? We have

, d(2 [T .
erf(x):%{ﬁ/o et dt}
2 d [" _p
=—— dt
ﬁdx/oe
2

2

= —67

Nz
8.7 Method of substitution

The chain rule says that

so that

8.7.1 Example.

Consider the function f(z) = 2zsin(z? + 3). It does not appear in the list of standard
antiderivatives we know by heart. But we do notice? that 2z = %(ﬁ + 3). So let’s call
G(x) = 2* + 3, and F(u) = — cosu, then

F(G(z)) = — cos(z* + 3)

" 4P (G)
T) ' B
— = sin(z® +3)- 2z = f(x),
F(G@) @@
so that
/237 sin(z® 4 3) dr = — cos(z? + 3) + C. (8.12)

2 You will start noticing things like this after doing several examples.
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8.7.2 Leibniz’ notation for substitution.

The most transparent way of computing an integral by substitution is by following Leibniz
and introduce new variables. Thus to do the integral

/ F(G(2))G (z) da

where f(u) = F'(u), we introduce the substitution v = G(z), and agree to write

du = dG(z) = G'(x) dx

/f NG (z dx—/f (u) + C.

At the end of the integration we must remember that u really stands for G(z), so that

Then we get

/f(G(w))G’(x) dr = F(u) + C = F(G(z)) + C.

As an example, let’s do the integral (8.12) using Leibniz’ notation. We want to find

/ 2x sin(z? + 3) dx

and decide to substitute z = 22 + 3 (the substitution variable doesn’t always have to be
called u). Then we compute

dz = d(2* + 3) = 2z dz and sin(z” + 3) =sinz,

so that
/2xsin(m2 +3)dr = /sinzdz = —cosz+ C.

Finally we get rid of the substitution variable z, and we find
/295 sin(z” + 3) dz = — cos(2* + 3) + C.

When we do integrals in this calculus class, we always get rid of the substitution variable
because it is a variable we invented, and which does not appear in the original problem.
But if you are doing an integral which appears in some longer discussion of a real-life (or
real-lab) situation, then it may be that the substitution variable actually has a meaning
(e.g. “the effective stoichiometric modality of CQF self-inhibition”) in which case you may
want to skip the last step and leave the integral in terms of the (meaningful) substitution
variable.
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8.7.3 Substitution for definite integrals.

For definite integrals the chain rule

é%gqaw»)_PWG@»G%@—aﬂG@DG%@

implies
b
/ J(G(@))G (x) dz = F(G(b)) — F(G(a)).

which you can also write as

b G(b)
/ f(G(2)G (z) dx = / f(u) du. (8.13)
8.7.4 Example of substitution in a definite integral.

1
/ T dx,
0 1+ﬂ72

using the substitution u = G(x) = 1 + 2. Since du = 2x dx, the associated indefinite
integral is

Let’s compute

To find the definite integral you must compute the new integration bounds G(0) and G(1)
(see equation (10.3).) If z runs between x = 0 and x = 1, then u = G(x) = 1 + z? runs
between u =14 02 = 1 and v = 1 + 12 = 2, so the definite integral we must compute is

1 2
1
/ * 2d:c:%/ = du, (8.14)
0 1+ 1 u

which is in our list of memorable integrals. So we find

L et [ g S ] = 1hno
01+x2$—515“—§[nu]1—§n-

Sometimes the integrals in (8.14) are written as

1 2
T 1
de=1[ =a
/xo 1+ a2 v 2/u1u “

to emphasize (and remind yourself) to which variable the bounds in the integral refer.
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8.8 PROBLEMS

RIEMANN SUMS

355. What is a Riemann sum of a function y = f(x)?

356. Let f be the function f(z) =1 — 22
Draw the graph of f(z) with 0 <z < 2.

Compute the Riemann-sum for the partition
1 3
O<s<l<y<2

of the interval [a, b] = [0, 2] if you choose each ¢, to be the left endpoint of the interval it
belongs to. Draw the corresponding rectangles (add them to your drawing of the graph
of f).

Then compute the Riemann-sum you get if you choose the ¢, to be the right endpoint
of the interval it belongs to. Make a new drawing of the graph of f and include the
rectangles corresponding to the right endpoint Riemann-sum. 7386

357. Look at figure 8.2 (top). Which choice of intermediate points ¢, ..., cg leads to the
smallest Riemann sum? Which choice would give you the largest Riemann-sum?

(Note: in this problem you’re not allowed to change the division points x;, only the points
¢; in between them.) 1386

ANTIDERIVATIVES

Find an antiderivative F'(z) for each of the following functions f(z). Finding antideriva-
tives involves a fair amount of guess work, but with experience it gets easier to guess
antiderivatives.

358. f(x) =2r+1 368 f(l’) — e -¢
359. f(z)=1-3z . 12
360. f(z)=a2—z+11 369. f(zr) = 1+ 22
361. f(z)=a"—2? et e
262 , 2 g3 b 370 flx) = 2
. f(JJ)— +$+7+§+Z - f(x): 1
363. f(z) =+ b
' o T 372. f(x)=sinz
364. f(x) =¢€"
, 37, f(r) = - 2
365. f(z) =~ *
$22 374. f(z) =cosx
366. f(z)=e ' 375. f(x)=cos2x
367. f(r)= Y. 376. f(x) =sin(x — 7/3)
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377. f(x) =sinz + sin2x 378. f(z) =2z(1 +2?%)°

INTEGRATING BETWEEN THE LINES

In each of the following exercises you should compute the area of the indicated region,
and also of the smallest enclosing rectangle with horizontal and vertical sides.

Before computing anything draw the region.

379. The region between the vertical lines z = 0 and x = 1, and between the z-axis and
the graph of y = 3.

380. The region between the vertical lines x = 0 and x = 1, and between the z-axis and

the graph of y = 2™ (here n > 0, draw for n = 2, 1,2,3,4).

381. The region above the graph of y = 1/z, below the line y = 2, and between the vertical
lines x = 0, z = 4.

382. The region above the z-axis and below the graph of f(z) = 2% — 3.

383. The region above the z-axis and below the graph of f(z) = 42% — 2*

384. The region above the z-axis and below the graph of f(z) =1 — 2.

385. The region above the x-axis, below the graph of f(x) = sinx, and between x = 0 and
T =T.

386. The region above the x-axis, below the graph of f(x) = 1/(1 + 2?) (a curve known
as Maria Agnesi’s witch), and between z = 0 and = = 1.

387. The region between the graph of y = 1/z and the z-axis, and between x = a and
x = b (here 0 < a < b are constants, e.g. choose a = 1 and b = V2 if you have something
against either letter a or b.)

388. The region above the z-axis and below the graph of

1
fle) = 1+ z

389. Compute

1
/ V1 — z2dx
0

without finding an antiderivative for v/1 — 22 (you can find such an antiderivative, but
it’s not easy. This integral is the area of some region: which region is it, and what is that
area?)

390. Compute these integrals without finding antiderivatives.

1/2
I—/ v1—z2dx



DIFFERENTIATING INTEGRALS:

d ’ 4 d 2x
391. — [ (14¢) dt @ 2
o ) 1+ 395. o | s
d 1
392. —/ Inzdz d [? dx
dx J, 396. 2 T [Which values of ¢ are
t q —q -z
393, 4 [ allowed here?]
dt J, 1+ 22
1/t 12
394. 4 d 397. i/ e*dx
dt 0 1+x2 dt 0

398. You can see the graph of the error function at
http://en.wikipedia.org/wiki/Error_function
(a) Compute the second derivative of the error function. How many inflection points
does the graph of the error function have?
(b) The graph of the error function on Wikipedia shows that erf(z) is negative when
x < 0. But the error function is defined as an integral of a positive function so it should
be positive. Is Wikipedia wrong? Explain. 1386

INDEFINITE INTEGRALS:

399. /{6x5—2x_4—7x}da: 402. /{\/E— Vat + 372 —6e” + 1} dx
T
400. /{+3/x—5+4ex+7x}d:c 403. /{2954_ (%)’”} dr
401. /(x/a +a/x+ 2%+ a” + ax) dx
DEFINITE INTEGRALS
4 2
404. / (32 — 5) dx 409. / (52% — 4z + 3) dw
-2 1
4 0
405. / v dx (hm...) 410. / (5y* — 6y* + 14) dy
1 -3
4 1
406. / t2 dt (" 411. / (y? — 2¢° + 3y) dy
1 0
4 4
407. / 2 dt (1) 412. Vv dz
1 0
1 1
408. / (1 —2x — 32%) dx 413. / 2?7 da
0 0
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414.

415.

416.

417.

418

419.

420

421.

422

423.

424.

425.

426.

427.

428.

429.

430.

431.

3
1 1
/1(72‘74)‘”
2 46 2
t°—t
[t
1 t

/02(333 —1)%dx

[

/12(x+1/x)2dx

/1@ C1)(3r +2) da

. /(ﬁ_a/mdt

/2
/ (cos@ + 2sin @) df

0

w/2
432./ (cosf + sin 26) do
0
T g
433. / WY
or/3 COST
7I'/2 t
434. / C? xdiﬁ
7r/3 SINnx
V36
435./ dx
. 1+ a2
05 dg
436.
/0 V1— 22
8
437, / (1/2) da
4
In6
438./ e* dx
In3
9
439. / 2t dt
8

440. / §dx
_e2 X

3
441. / |2* — 1] dx

-2

2

442. / |z — 2?| dx
-1
2

443, /(w—?]x\)dw

1

2
444. /(x2—|x—1|)dx
0

445. /0 f(x) dx where flz) =

 ifo<xz<l,
2, ifl1<a<2.

X, it —m<2x<0,
fle) =4 . .
sinz, if0<z <.

159



447. Compute
2
1:/ 21(1+ 22)" d
0

in two different ways:
(a) Expand (1 + 2?)?, multiply with 2z, and integrate each term.
(b) Use the substitution u =1 + 2.

448. Compute
I, = /295(1 +2%)" da.

449. If f'(z) =2 — 1/2* and f(1) = 1/2 find f(x).

450. Sketch the graph of the curve y = v/x 4+ 1 and determine the area of the region
enclosed by the curve, the z-axis and the lines x = 0, x = 4.

451. Find the area under the curve y = +/6x + 4 and above the x-axis between x = 0 and
x = 2. Draw a sketch of the curve.

452. Graph the curve y = 2v/1 — 22, € [0, 1], and find the area enclosed between the
curve and the z-axis. (Don’t evaluate the integral, but compare with the area under the

graph of y = v/1 — 22.)

453. Determine the area under the curve y = v/a? — 22 and between the lines x = 0 and
r = a.

454. Graph the curve y = 2v/9 — 22 and determine the area enclosed between the curve
and the z-axis.

455. Graph the area between the curve y? = 4z and the line x = 3. Find the area of this
region.

456. Find the area bounded by the curve y = 4 — 22 and the lines y = 0 and y = 3.
457. Find the area enclosed between the curve y = sin2z, 0 < z < 7/4 and the axes.
458. Find the area enclosed between the curve y = cos2z, 0 < z < 7/4 and the axes.
459. Graph y? +1 = z, and find the area enclosed by the curve and the line z = 2.
460. Find the area of the region bounded by the parabola y* = 4z and the line y = 2x.
461. Find the area bounded by the curve y = (2 — ) and the line = = 2y.

462. Find the area bounded by the curve 2% = 4y and the line z = 4y — 2.

463. Calculate the area of the region bounded by the parabolas y = 22 and z = 3.

464. Find the area of the region included between the parabola y?> = z and the line
r+y =2

465. Find the area of the region bounded by the curves y = \/x and y = =.
466.

Emily asks her assistant, Kate, to produce graphs of a function f(x), its derivative f'(x)
and an antiderivative F'(z) of f(x).
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Unfortunately Kate simply labelled the graphs “A;” ”B,” and “C,” and now she doesn’t

remember which graph is f, which is f’ and which is F. In the diagram below, identify
which graph is which and explain your answer.

Y

467.
Below is the graph of a function y = f(x).

The function F(z) (graph not shown) is an antiderivative of f(z). Which among the
following statements true?

(a) F(a) = F(c)

(b) F(b) =0

(c) F(b) > F(c)

(d) The graph of y = F(z) has two inflection points?
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INTEGRATION BY SUBSTITUTION

2 3
d 1
468. / Lo 477. / dr
1 14 u? o Tlnr
5 in2
469. v du 478. / Lﬂ; x
o vVr+1 1+ cos®x
2 2 de 479 sin 2z dx
470. NG ) 1+ sinx
1 V 2x + 1
1
471, ° sds 480. / V1 — 22dz
o Vsi2 0
2
> zda 481 2z
472. ) T
1 ]. + IQ 1
™ V2
473. / cos(0 + %)do 482. (1 + 2610 d¢
0 £=0
LTz 3
474. /sm 7 dx 483. / sin p(cos 2p)* dp
2
475 sin 2x d 2
. ——dx o
VIt cosox 484. /ae o
/3 %
476. sin? 0 cos 6 df 485. e dt
w/4 t2
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Chapter 9

Applications of the integral

The integral appears as the answer to many different questions. In this chapter we will
describe a number of “things which are an integral.” In each example there is a quantity
we want to compute, and which we can approximate through Riemann-sums. After
letting the partition become arbitrarily fine we then find that the quantity we are looking
for is given by an integral. The derivations are an important part of the subject.

9.1 Areas between graphs

Suppose you have two functions f and g on an interval [a, b], one of which is always larger
than the other, i.e. for which you know that f(x) < g(x) for all x in the interval [a, b].
Then the area of the region between the graphs of the two functions is

Area :/ (9(z) — f(z))dz. (9.1)

/ y=g(x)

| N
Ck;, ;\ .
/ . ' ’ \yzf(x)

Figure 9.1: Finding the area between two graphs using Riemann-sums.
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To get this formula you approximate the region by a large number of thin rectangles.
Choose a partition a = z¢g < 21 < --- < x,, = b of the interval [a, b]; choose a number ¢
in each interval [z;_1, zg]; form the rectangles

Tp—1 S @ < @y, flew) <y < gler).
The area of this rectangle is
width x height = Axy X (g(ck) — f(ck))
Hence the combined area of the rectangles is
R= (9(01) - f(cl))Axl + (EJ(Cn) - f(cn))AOCn

which is just the Riemann-sum for the integral

= / (9(x) — f())dx.
So,

1. since the area of the region between the graphs of f and ¢ is the limit of the
combined areas of the rectangles,

2. and since this combined area is equal to the Riemann sum R,

3. and since the Riemann-sums R converge to the integral I,

we conclude that the area between the graphs of f and g is exactly the integral I.

9.2 Cavalieri’s principle and volumes of solids

You can use integration to derive the formulas for volumes of spheres, cylinder, cones,
and many many more solid objects in a systematic way. In this section we’ll see the
“method of slicing.”

9.2.1 Example — Volume of a pyramid.

As an example let’s compute the volume of a pyramid whose base is a square of side 1,
and whose height is 1. Our strategy will be to divide the pyramid into thin horizontal
slices whose volumes we can compute, and to add the volumes of the slices to get the
volume of the pyramid.
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T+ Ax

Figure 9.2: The slice at height z is a square with side 1 — x.

To construct the slices we choose a partition of the (height) interval [0, 1] into N subin-
tervals, i.e. we pick numbers

O:x0<x1<x2<---<xN_1<xN:1,

and as usual we set Az, = x, — x,_1, we define the mesh size of the partition to be the
largest of the Axy.

The k' slice consists of those points on the pyramid whose height is between ;_; and zy.
The intersection of the pyramid with the plane at height x is a square, and by similarity
the length of the side of this square is 1 — x. Therefore the bottom of the k" slice is a
square with side 1 —x;_1, and its top is a square with side 1 — x;. The height of the slice
is o — xp_1 = Axy.

Thus the &' slice contains a block of height Az;, whose base is a square with sides 1 —z,
and its volume must therefore be larger than (1 — x;)2Axy. On the other hand the A"
slice is contained in a block of the same height whose base is a square with sides 1 —x_.
The volume of the slice is therefore not more than (1 — z;_1)?Ax;. So we have

(1 — z)? Az < volume of k™ slice < (1 — zp_1)*Axy.
Therefore there is some ¢ in the interval [xy_1, xx] such that
volume of k™ slice = (1 — ¢;)?Axy.
Adding the volumes of the slices we find that the volume V of the pyramid is given by
V=_0-¢)Azr;+ -+ (1 —cy)*Azy.

The right hand side in this equation is a Riemann sum for the integral

I= /01(1 — z)%dx
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and therefore we have
I = hm{(l — Cl)zAl’l +---+ (1 - CN)QAﬁN} =V.

Compute the integral and you find that the volume of the pyramid is

1
V==,
3

9.2.2 General case.

The “method of slicing” which we just used to compute the volume of a pyramid works
for solids of any shape. The strategy always consists of dividing the solid into many thin
(horizontal) slices, compute their volumes, and recognize that the total volume of the
slices is a Riemann sum for some integral. That integral then is the volume of the solid.

Figure 9.3: Slicing a solid to compute its volume. The volume of one slice is approximately the
product of its thickness (Ax) and the area A(x) of its top. Summing the volume A(x)Ax over all

slices leads approximately to the integral ffA(m)da:.

To be more precise, let a and b be the heights of the lowest and highest points on the
solid, and let @ = 2y < 21 < 9 < ... < xx_1 < Ty = b be a partition of the interval [a, b].
Such a partition divides the solid into N distinct slices, where slice number % consists of
all points in the solid whose height is between xj,_; and xj. The thickness of the k*" slice
is A]Zk =Tk — Tp—1- If

A(x) = area of the intersection of the solid with the plane at height x.
then we can approximate the volume of the k' slice by
A(ck)A:ck

where ¢, is any number (height) between z;_; and xy.

The total volume of all slices is therefore approximately

Vx Ale)Axy + -+ Alen)Azy.
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While this formula only holds approximately, we expect the approximation to get better
as we make the partition finer, and thus

On the other hand the sum on the right is a Riemann sum for the integral I = fab A(z)dz,
so the limit is exactly this integral. Therefore we have

V= /b A(x)dz. (9.3)

9.2.3 Cavalieri’s principle.

Figure 9.4: Cavalieri's principle. Both solids consist of a pile of horizontal slices. The solid on the
right was obtained from the solid on the left by sliding some of the slices to the left and others to
the right. This operation does not affect the volumes of the slices, and hence both solids have the
same volume.

The formula (9.3) for the volume of a solid which we have just derived shows that the
volume only depends on the areas A(z) of the cross sections of the solid, and not on the
particular shape these cross sections may have. This observation is older than calculus
itself and goes back at least to Bonaventura Cavalieri (1598 — 1647) who said: If the
intersections of two solids with a horizontal plane always have the same area, no matter
what the height of the horizontal plane may be, then the two solids have the same volume.

This principle is often illustrated by considering a stack of coins: If you put a number
of coins on top of each other then the total volume of the coins is just the sum of the
volumes of the coins. If you change the shape of the pile by sliding the coins horizontally
then the volume of the pile will still be the sum of the volumes of the coins, i.e. it doesn’t
change.

To see some examples of volume by slicing consider watching You® by Houstan Math
Prep .

9.2.4 Solids of revolution.

In principle, formula (9.3) allows you to compute the volume of any solid, provided you
can compute the areas A(x) of all cross sections. One class of solids for which the areas
of the cross sections are easy are the so-called “solids of revolution.”
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Figure 9.5: A solid of revolution consists of all points in three-dimensional space whose distance r
to the z-axis satisfies r < f(z).

A solid of revolution is created by rotating (revolving) the graph of a positive function
around the z-axis. More precisely, let f be a function which is defined on an interval [a, b]
and which is always positive (f(z) > 0 for all z). If you now imagine the z-axis floating
in three dimensional space, then the solid of revolution obtained by rotating the graph
of f around the z-axis consists of all points in three-dimensional space with a < x < b,
and whose distance to the z-axis is no more than f(z).

Yet another way of describing the solid of revolution is to say that the solid is the union
of all discs which meet the z-axis perpendicularly and whose radius is given by r = f(z).

If we slice the solid with planes perpendicular to the z-axis, then (9.3) tells us the volume
of the solid. Each slice is a disc of radius r = f(z) so that its area is A(z) = 7r? = 7 f(x)%.
We therefore find that

b
V= 7T/ f(z)dz. (9.4)

9.3 Examples of volumes of solids of revolution

9.3.1 Problem 1: Revolve R around the y-axis .
Consider the solid obtained by revolving the region
R={(zy)[0<z<2 (2-1)'<y<l}

around the y-axis.

Solution: The region we have to revolve around the y-axis consists of all points above
the parabola y = (z — 1)? but below the line y = 1.

If we intersect the solid with a plane at height y then we get a ring shaped region, or
“annulus”, i.e. a large disc with a smaller disc removed. You can see it in the figure
below: if you cut the region R horizontally at height y you get the line segment AB, and
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if you rotate this segment around the y-axis you get the grey ring region pictured below
the graph. Call the radius of the outer circle r,,; and the radius of the inner circle ry,.
These radii are the two solutions of

y=(1-r)

so they are

rin:]-_\/ga 7ﬁou‘czl—i_\/§~

y=(x—1)

x
— 2 2
Area = 7r;,, — ;.

Figure 9.6: Computing the volume of the solid you get when you revolve the region R around the
y-axis. A horizontal cross section of the solid is a “washer” with inner radius ri,, and outer radius

Tout -

The area of the cross section is therefore given by

Aly) =y — it = (14 )" —7(1— ) = dny.

The y-values which occur in the solid are 0 < y < 1 and hence the volume of the solid is
given by
8T

1 1
V:/A(y)dy:47r/ \/§dy247r><§:3.
0 0

9.3.2 Problem 2: Revolve R around the line » = —1.

Find the volume of the solid of revolution obtained by revolving the same region R around
the line x = —1.
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Solution: The line z = —1 is vertical, so we slice the solid with horizontal planes. The
height of each plane will be called y.

As before the slices are ring shaped regions but the inner and outer radii are now given
by
Tin:1+xin:2_\/§a Tout:1+xout:2+\/§-

The volume is therefore given by

1 1

1
V = / (m“gut — Wr?n)dy = 7T/ 8y dy = —gﬂ.
0 0

9.3.3 Problem 3: Revolve R around the line y = 2.

Compute the volume of the solid you get when you revolve the same region R around the
line y = 2.

Solution: This time the line around which we rotate R is horizontal, so we slice the
solid with planes perpendicular to the x-axis.

A typical slice is obtained by revolving the line segment AB about the line y = 2. The
result is again an annulus, and from the figure we see that the inner and outer radii of

the annulus are
Tin = 1, Tout = 2 — (1 — x)2.

The area of the slice is therefore
A)=m{2— (1 -2} —r?=n {3-4(1—2)*+ (1 —2)*}.

The x values which occur in the solid are 0 < x < 2, and so its volume is

V—W/2{3—4(1—x)2—l—(1—$)4}d$

:7[3x+f§1(1_$>3_%(1_$>5]2

0
_ 56

=17

9.4 Volumes by cylindrical shells

Instead of slicing a solid with planes you can also try to decompose it into cylindrical
shells.

The volume of a cylinder of height h and radius r is 7r?h (height times area base).
Therefore the volume of a cylindrical shell of height h, (inner) radius r and thickness Ar
is

mh(r + Ar)* — whr® = 7h(2r + Ar)Ar
~ 2rhrAr.

Now consider the solid you get by revolving the region

R={(z,y) |a<x<b0<y< f(x)}
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around the y-axis. By partitioning the interval a < x < b into many small intervals we can
decompose the solid into many thin shells. The volume of each shell will approximately
be given by 27z f(x)Az. Adding the volumes of the shells, and taking the limit over
finer and finer partitions we arrive at the following formula for the volume of the solid of
revolution:

V= 27T/ xf(z) dr. (9.5)

Figure 9.7: Computing the volume of a circus tent using cylindrical shells. This particular tent is
obtained by rotating the graph of y = e, 0 < x <1 around the y-axis.

If the region R is not the region under the graph, but rather the region between the
graphs of two functions f(z) < g(x), then we get

V= 27r/ {g(z) — f(z)} da.

9.4.1 Example — The solid obtained by rotating R about the
y-axis, again.

The region R from §9.3.1 can also be described as
R={(z.9) |[0<2<2 f(z) <y < g(@)},

where
f(z) = (r —1)* and g(z) = 1.

The volume of the solid which we already computed in §9.3.1 is thus given by
1
V:27r/ {1l —(z—1)"} dz
0
2
= 27r/ {—x?’ + 2:162} dx
0

= 27r[—%:v4 + %xs]i
= 87/3,

which coincides with the answer we found in §9.3.1.
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9.5 Distance from velocity, velocity from accelera-
tion

9.5.1 Motion along a line.

If an object is moving on a straight line, and if its position at time ¢ is x(t), then we had
defined the velocity to be v(t) = 2/(t). Therefore the position is an antiderivative of the
velocity, and the fundamental theorem of calculus says that

/t Co(t) dt = 2(ty) — a(t), (9.6)

2(ty) = 2(ts) + /t "ot dt.

In words, the integral of the velocity gives you the distance travelled of the object (during
the interval of integration).

Equation (9.6) can also be obtained using Riemann sums. Namely, to see how far the
object moved between times ¢, and ¢, we choose a partition t, =ty <t; < --- <ty =1p.
Let Asy be the distance travelled during the time interval (¢;_1,%;). The length of this
time interval is Aty = t;, — t;_1. During this time interval the velocity v(¢) need not be
constant, but if the time interval is short enough then we can estimate the velocity by
v(cg) where ¢ is some number between ;1 and ¢;. We then have

Ask = ’U(Ck)Atk

and hence the total distance travelled is the sum of the travel distances for all time
intervals t,_1 <t < tg, i.e.

Distance travelled = Asy + -+ + Asy = v(c1) Aty + - - - + v(en) Aty.

The right hand side is again a Riemann sum for the integral in (9.6). As one makes the
partition finer and finer you therefore get

iy
Distance travelled = / v(t) dt.
ta

The return of the dummy. Often you want to write a formula for x(t) = --- rather
than z(t,) = --- as we did in (9.6), i.e. you want to say what the position is at time ¢,
instead of at time t,. For instance, you might want to express the fact that the position
x(t) is equal to the initial position x(0) plus the integral of the velocity from 0 to t. To
do this you cannot write

t
x(t):x(0)+/ v(t)dt = BAD FORMULA
0

because the variable ¢ gets used in two incompatible ways: the ¢ in z(¢) on the left, and in
the upper bound on the integral ([ t) are the same, but they are not the same as the two
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t’s in v(t)dt. The latter is a dummy variable (see §3.7 and §8.3.1). To fix this formula we
should choose a different letter or symbol for the integration variable. A common choice

in this situation is to decorate the integration variable with a prime (¢'), a tilde (¢) or a
bar (£). So you can write

z(t) = x(0) +/0 v(t) dt

9.5.2 Velocity from acceleration.

The acceleration of the object is by definition the rate of change of its velocity,

so you have t
v(t) = v(0) —i—/o a(t)dt.

Conclusion: If you know the acceleration a(t) at all times t, and also the velocity v(0) at
time t = 0, then you can compute the velocity v(t) at all times by integrating.

9.5.3 Free fall in a constant gravitational field.

If you drop an object then it will fall, and as it falls its velocity increases. The object’s
motion is described by the fact that its acceleration is constant. This constant is called
g and is about 9.8m/sec? &~ 32ft/sec?. If we dsignate the upward direction as positive
then v(t) is the upward velocity of the object, and this velocity is actually decreasing.
Therefore the constant acceleration is negative: it is —g.

If you write h(t) for the height of the object at time ¢ then its velocity is v(t) = h/(t),
and its acceleration is h”(t). Since the acceleration is constant you have the following
formula for the velocity at time t¢:

v(t) =v(0) + /Ot(—g) dt =v(0) — gt.

Here v(0) is the velocity at time ¢ = 0 (the “initial velocity”).
To get the height of the object at any time ¢ you must integrate the velocity:

h(t) = h(0) + /t v(t) dt (Note the use of the dummy ¢)
=h(0) + Ot{v(O) — gt} dt (use v(t) = v(0) — gt)
= h(0) + [v(0)7 - 44P’]
= h(0) + v(0)t — gt°.

For instance, if you launch the object upwards with velocity 5ft/sec from a height of 10ft,
then you have
R(0) = 10ft, wv(0) = +5ft/sec,
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and thus
h(t) = 10 4 5t — 32t*/2 = 10 + 5t — 16¢2.

The object reaches its maximum height when h(¢) has a maximum, which is when A/(t) =
0. To find that height you compute h'(t) = 5 — 32t and conclude that h(t) is maximal at
t= %sec. The maximal height is then

fmas = h(35) =10+ 5 — & = 103,

9.5.4 Motion in the plane — parametric curves.

To describe the motion of an object in the plane you could keep track of its x and y
coordinates at all times ¢. This would give you two functions of ¢, namely, z(¢) and y(t),
both of which are defined on the same interval ¢ty < ¢t < t; which describes the duration
of the motion you are describing. In this context a pair of functions (x(t),y(t)) is called
a parametric curve.

y(®)

x:(t)

As an example, consider the motion described by
x(t) = cost, y(t) =sint(0 <t < 2m).
In this motion the point (x(t),y(t)) lies on the unit circle since
z(t)? 4+ y(t)* = cos’t +sin’t = 1.

As t increases from 0 to 27 the point (x(t), y(t)) goes around the unit circle exactly once,
in the counter-clockwise direction.
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(x(t) y(t) (1-£2) g (X(0), Y(0)

t=0 t=-1

t=m t=2m

t=1

~ - - - —— =

Figure 9.8: Two motions in the plane. On the left x(¢) = cost, y(t) = sint with 0 <t < 27, and
on the right z(t) = ¢, y(t) = /(1 — ) with —1 <t <1

In another example one could consider
() =t, yt)=vV1—1t3, (-1<t<1).
Here at all times the z and y coordinates satisfy
B(t)? + y(t)? = 1

again so that the point (z(t),y(t)) = (¢,v/1 —t?) again lies on the unit circle. Unlike
the previous example we now always have y(t) > 0 (since y(t) is the square root of
something), and unlike the previous example the motion is only defined for —1 < ¢ < 1.
As t increases from —1 to +1, z(t) = ¢ does the same, and hence the point (z(t),y(t))
moves along the upper half of the unit circle from the leftmost point to the rightmost
point.

9.5.5 The velocity of an object moving in the plane.

We have seen that the velocity of an object which is moving along a line is the derivative
of its position.

If the object is allowed to move in the plane, so that its motion is described by a parametric
curve (z(t),y(t)), then we can differentiate both z(t) and y(¢), which gives us z'(¢) and
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y'(t), and which leaves us with the following question: At what speed is a particle moving
if it is undergoing the motion (x(t),y(t)) (t, <t <tp) ¢

To answer this question we consider a short time interval (¢,¢ + At). During this time
interval the particle moves from (z(t), y(t)) to (z(t+ At),t(t+ At)). Hence it has traveled
a distance

As = [BoP + (By)?

where

Az = z(t + At) — x(t), and Ay = y(t + At) — y(t).

Dividing by At you get
as _ franyt sy
At At At )

for the average velocity over the time interval [t,t + At]. Letting At — 0 you find the

velocity at time ¢ to be
dz\? dy 2
= — — | . 9.7
\/(dt) - (dt) ©-7)

9.5.6 Example — the two motions on the circle from §9.5.4.

If a point moves along a circle according to z(t) = cost, y(t) = sint (figure 9.8 on the
left) then
dx dy

— = —sint, ,— = 4 cost

dt

SO

v(t) = \/(—cost)? + (sint)2 = 1.

The velocity of this motion is therefore always the same; the point (cost,sint) moves
along the unit circle with constant velocity.

In the second example in §9.5.4 we had z(t) = t, y(t) = V1 — 2, so
dx dy —t

at 7 dt Ji-p
whence
21
11— J1—¢
Therefore the point (¢,v/1 — t?) moves along the upper half of the unit circle from the
left to the right, and its velocity changes according to v = 1/v/1 — 2.

v(t) =4/12+

9.6 The length of a curve

9.6.1 Length of a parametric curve.

Let (z(t),y(t)) be some parametric curve defined for ¢, < ¢t < t,. To find the length
of this curve you can reason as follows: The length of the curve should be the distance
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travelled by the point (z(t),y(t)) as t increases from ¢, to t,. At each moment in time
the velocity v(t) of the point is given by (9.7), and therefore the distance traveled should

be
5:/tbv(t) dt:/tb\/x/(t)zqty’(t)? dt. (9.8)

Alternatively, you could try to compute the distance travelled by means of Riemann
sums.

def x(t): return 0.05+4*t*(1-t) def y(t): return 0.05+t+t*t*(1-t)

Ps

Choose a partition
to=tg<t1 < - <itny=1

of the interval [t,,t,]. You then get a sequence of points Py(x(to), y(to)), Pi(z(t1),y(t1)),
..., Py(z(tyn),y(tn)), and after “connecting the dots” you get a polygon. You could
approximate the length of the curve by computing the length of this polygon. The
distance between two consecutive points P,_; and P is

Ask = \/(Ailj'k)2 + (Ayk)2

(5 + (S8 an

~ /()2 + (k)2 Aty

where we have approximated the difference quotients

Axy, d Ay,
Aty Aty
by the derivatives 2'(cx) and y'(cx) for some ¢y in the interval [tg_q, ]

The total length of the polygon is then

V()2 +y ()2 Aty + -+ /2 ()2 + ¢/ (c1)? Aty

This is a Riemann sum for the integral ftib V' (t)? 4+ y'(t)? dt, and hence we find (once
more) that the length of the curve is

5= /t SO O dt
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9.6.2 The length of the graph of a function.

The graph of a function (y = f(z) with a < x < b) is also a curve in the plane, and you
can ask what its length is. We will now find this length by representing the graph as a
parametric curve and applying the formula (9.8) from the previous section.

The standard method of representing the graph of a function y = f(x) by a parametric
curve is to choose
z(t) =t, and y(t) = f(t), fora <t <b.

This parametric curve traces the graph of y = f(x) from left to right as ¢ increases from
a to b.

Since z/(t) = 1 and y/(t) = f(t) we find that the length of the graph is

L= /b\/l + f(t)? dt.

The variable ¢ in this integral is a dummy variable and we can replace it with any other
variable we like, for instance, x:

L:/1M1+f@Fdx (9.9)

In Leibniz’ notation we have y = f(x) and f'(z) = dy/dx so that Leibniz would have

written ,
dy 2
L= 1 — )" dzx.
/QV () @

9.7 Examples of length computations

9.7.1 Length of a circle.

In §9.6 we parametrized the unit circle by
x(t) = cost, y(t) =sint, (0<t<2m)

and computed y/2/(t)? + y/(t)?> = 1. Therefore our formula tells us that the length of the
unit circle is
2 2
L:/' MW+MWﬁ:/ Ldi = 2m.
0 0

This cannot be a PROOF that the unit circle has length 27 since we have already used
that fact to define angles in radians, to define the trig functions Sine and Cosine, and
to find their derivatives. But our computation shows that the length formula (9.9) is at
least consistent with what we already knew.

178



9.7.2 Length of a parabola.

Consider our old friend, the parabola y = 22, 0 < x < 1. While the area under its graph
was easy to compute (%), its length turns out to be much more complicated.

Our length formula (9.9) says that the length of the parabola is given by

1 dxg 9 1
L:/ 1+(%) dx:/ V14 422 dz.
0 0

To find this integral you would have to use one of the following (not at all obvious)
substitutions'

1 1
(z _ _) (then 1+ 42% = Z(,z +1/2)? so you can simplify the /)
z

e L

Tr =

or (if you like hyperbolic functions)

x = 3 sinhw (in which case V1 4 422 = coshw.)

9.7.3 Length of the graph of the Sine function.

To compute the length of the curve given by y = sinz, 0 < x < 7 you would have to
compute this integral:

L:/ \/1—I—(di‘;n$)2 da::/ V14 cos?zx du. (9.10)
0 r 0

Unfortunately this is not an integral which can be computed in terms of the functions
we know in this course (it’s an “elliptic integral of the second kind.”) This happens very
often with the integrals that you run into when you try to compute the length of a curve.
In spite of the fact that we get stuck when we try to compute the integral in (9.10), the
formula is not useless. For example, since —1 << cosx < 1 we know that

1<V1+cos?z <V1i+1=+2,

and therefore the length of the Sine graph is bounded by
/ lde < / V1+costzdr < / V2 dz,
0 0 0

i.e.
< L< 2.

'Many calculus textbooks will tell you to substitute 2 = tan @, but the resulting integral is still not
easy.
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9.8 Work done by a force

9.8.1 Work as an integral.

In Newtonian mechanics a force which acts on an object in motion performs a certain
amount of work, i.e. it spends a certain amount of energy. If the force which acts is
constant, then the work done by this force is

Work = Force x Displacement.

For example if you are pushing a box forward then there will be two forces acting on the
box: the force you apply, and the friction force of the floor on the box.

displacement

,7)ush

>
>

1.X

<
friction

The amount of work you do is the product of the force you exert and the length of the
displacement. Both displacement and the force you apply are pointed towards the right,
so both are positive, and the work you do (energy you provide to the box) is positive.

The amount of work done by the friction is similarly the product of the friction force and
the displacement. Here the displacement is still to the right, but the friction force points
to the left, so it is negative. The work done by the friction force is therefore negative.
Friction extracts energy from the box.

Suppose now that the force F'(¢f) on the box is not constant, and that its motion is
described by saying that its position at time ¢ is 2(¢). The basic formula work = force x
displacement does not apply directly since it assumes that the force is constant. To
compute the work done by the varying force F(t) we choose a partition of the time
interval t, <t <, into

to =t <1 < - <ity_1 <ty=1t

In each short time interval ¢,y < t < ¢, we assume the force is (almost) constant and
we approximate it by F'(¢y) for some t;_1 < ¢ < tj. If we also assume that the velocity
v(t) = 2'(t) is approximately constant between times ¢;_; and t; then the displacement
during this time interval will be

x(ty) — x(tr_1) =~ v(cg)Aty,

where At =t — tp_1. Therefore the work done by the force F' during the time interval
tk—l S t S tk is
AWk = F(ck)v(ck)Atk
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Adding the work done during each time interval we get the total work done by the force
between time t, and t,:

W = F(C1)’U(61)At1 —+ -4 F(CN)U(CN)AtN.

Again we have a Riemann sum for an integral. If we take the limit over finer and finer
partitions we therefore find that the work done by the force F(t) on an object whose
motion is described by x(t) is

W= / " Fy()dr, (9.11)

in which v(t) = 2/(t) is the velocity of the object.

9.8.2 Kinetic energy.

Newton’s famous law relating the force exerted on an object and its motion says F' = ma,
where a is the acceleration of the object, m is its mass, and F' is the combination of all
forces acting on the object. If the position of the object at time ¢ is x(t), then its velocity
and acceleration are v(t) = 2/(t) and a(t) = v'(t) = 2”(t), and thus the total force acting
on the object is

dv

F(t) =ma(t) = mo

The work done by the total force is therefore

W= /t " Rttt = /t tbmdi’iff) oft) dt. 9.12)

Even though we have not assumed anything about the motion, so we don’t know anything
about the velocity v(t), we can still do this integral. The key is to notice that, by the
chain rule,
dv(t dimu(t)?
m—<)v(t):—2 (t) .
dt dt

(Remember that m is a constant.) This says that the quantity
K(t) = tmo(t)?

is the antiderivative we need to do the integral (9.12). We get

ty
W / mdv(t)
te dt

o(t) dt = / " K dt = K(ty) — K(t,),

In Newtonian mechanics the quantity K (t) is called the kinetic energy of the object,
and our computation shows that the amount by which the kinetic energy of an object
increases is equal to the amount of work done on the object.
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9.9 Work done by an electric current

If at time ¢ an electric current I(t) (measured in Ampere) flows through an electric circuit,
and if the voltage across this circuit is V' (¢) (measured in Volts) then the energy supplied
tot the circuit per second is I(¢)V (¢).

current

N

/
d
_ -

~ =

- —— >

voltage = V(1)
Therefore the total energy supplied during a time interval ¢y < ¢ < ¢; is the integral

t1
Energy supplied :/ I(t)V (t)dt.

to

(measured in Joule; the energy consumption of a circuit is defined to be how much energy
it consumes per time unit, and the power consumption of a circuit which consumes 1 Joule
per second is said to be one Watt.)

If a certain voltage is applied to a simple circuit (like a light bulb) then the current
flowing through that circuit is determined by the resistance R of that circuit by Ohm’s
law? which says

V
I =—.
R

9.9.1 Example.

If the resistance of a light bulb is R = 20052, and if the voltage applied to it is
V(t) = 150 sin 27 ft

where f = 50sec™! is the frequency, then how much energy does the current supply to
the light bulb in one second?

To compute this we first find the current using Ohm’s law,

1
V_g) — %sin or ft = 0.75sin 27 ft.  (Amp)

2http://en.wikipedia.org/wiki/0Ohm’s_law

I(t) =
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The energy supplied in one second is then

o /l v

:/ (150 sin 27 ft) x (0.75sin 27 ft) dt
0

1
= 112.5/ sin?(27 ft) dt
0

You can do this last integral by using the double angle formula for the cosine, to rewrite

sin®(2m ft) = 1{1 — cos4n ft} =  — 1 cos4m ft.

Keep in mind that f = 50, and you find that the integral is

t

1
: I 1
/0 sin?(27 ft) dt = [5 o7 sindm ft] = 3,

and hence the energy supplied to the light bulb during one second is

E =112.5 x 5 = 56.25(Joule).
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9.10 PROBLEMS

AREAS BETWEEN GRAPHS

486. Find the area of the region bounded
by the parabola y?> = 4z and the line
y = 2.

487. Find the area bounded by the curve
y = (2 — z) and the line x = 2y.

488. Find the area bounded by the curve
2% = 4y and the line x = 4y — 2.

489. Calculate the area of the region
bounded by the parabolas y = z? and
2
xr =y

490. Find the area of the region included
between the parabola y? = z and the line
T4y =2

491. Find the area of the region bounded
by the curves y = /z and y = x.

492. Use integration to find the area of the
triangular region bounded by the lines
y=2rx+1,y=3r+1and z =4.

493. Find the area bounded by the
parabola 22 —2 = y and the line z+y = 0.

494. Where do the graphs of f(z) = z?
and g(x) = 3/(2 + z?) intersect? Find

the area of the region which lies above
the graph of g and below the graph of g.
(Hint: if you need to integrate 1/(2+ z?)
you could substitute z = U\/i)

495. Graph the curve y = (1/2)z%+ 1 and
the straight line y = z + 1 and find the
area between the curve and the line.

496. Find the area of the region between
the parabolas y? = x and 22 = 16y.

497. Find the area of the region enclosed
by the parabola y?> = 4ax and the line
Yy = mx.

498. Find a so that the curves y = 22

and y = acosx intersect at the points
(z,y) = (%, 7{—2) Then find the area be-

tween these curves.

499. Write a definite integral whose value
is the area of the region between the two
circles 22+ y* =1 and (z — 1) +¢* = 1.
Find this area. If you cannot evaluate
the integral by calculus you may use ge-
ometry to find the area. Hint: The part
of a circle cut off by a line is a circular
sector with a triangle removed.

184



501.

VOLUMES OF REVOLUTION

Draw and describe the solids whose volume you are asked to compute in the following

problems:
500. What do the dots in “lim...” in equa-
tion (9.2) stand for? (i.e. what ap-

proaches what in this limit?)

Find the volume enclosed by the
paraboloid obtained by rotating the
graph of f(z) = R/z/H (0 <z < H)
around the z-axis. Here R and H are
positive constants. Draw the solid whose
volume you are asked to compute, and
indicate what R and H are in your draw-
ing.

502. Find the volume of the solids you get

by rotating each of the following graphs
around the z-axis:

i) flz)=2,0<2<2

(i

(ii) f(z)=vV2—2,0<2 <2
(iif) f(z)=(1+ 2)_1/2 lz| <1
(iv) f(z) =sinz,0<z <7
(v) flz)=1-2% || <1

(v

i) f(x)=cosz,0<z<m (I
(vii) f(z)=1/cosx, 0 <z <m/4

503. Find the volume that results by rotat-

ing the semicircle y = v/ R? — 2 about

the z-axis.

504. Let T be triangle 1 <2 <2, 0<y <

3z — 3.

(i) Find the volume of the solid obtained
by rotating the triangle T around the -
axis.

(if) Find the volume that results by ro-
tating the triangle T around the y axis.

(iii) Find the volume that results by
rotating the triangle 7 around the line
r=—1
(iv) Find the volume that results by
rotating the triangle 7 around the line
y=—1

505. A spherical bowl of radius a contains

water to a depth h < 2a. Find the vol-
ume of the water in the bowl. (Which

solid of revolution is implied in this prob-
lem?)

506. Water runs into a spherical bowl of
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radius 5 ft at the rate of 0.2 ft*/sec. How
fast is the water level rising when the wa-
ter is 4 ft deep?



LENGTH OF CURVE

507. Find the length of the piece of the
graph of y = v/1 — 22 where 0 < z < %

The graph is a circle, so there are two
ways of computing this length. One
uses geometry (length of a circular arc
= radius X angle), the other uses an inte-
gral.

Use both methods and check that you get
the same answer. 7387

508. Compute the length of the part of the

evolute of the circle, given by

x(t) = cost—tsint, y(t) =sint+tcost

where 0 < ¢t < 7.

509. Show that the Archimedean spiral,

186

given by
x(0) =0cosh, y(f) =0sinfh, 0 <O <7

has the same length as the parabola given
by
_ 1,2
y=s3z°, 0<z<m

Hint: you can set up integrals for both
lengths. If you get the same integral in
both cases, then you know the two curves
have the same length (even if you don’t
try to compute the integrals).



Chapter 10

Methods of Integration

10.1 The indefinite integral

We recall some facts about integration from earlier chapters.

Definition 10.1.1. A function y = F'(z) is called an antiderivative of another function
y= f(z)if F'(z) = f(z) for all .

10.1.1 Example

Fi(z) = z? is an antiderivative of f(z) = 2x.

Fy(z) = 2% + 2004 is also an antiderivative of f(x) = 2.

G(t) = $sin(2t + 1) is an antiderivative of g(t) = cos(2t + 1).

The Fundamental Theorem of Calculus states that if a function y = f(z) is continuous

on an interval a < x < b, then there always exists an antiderivative F'(x) of f, and one
has

b
/ f(z)da = F(b) — F(a). (10.1)

The best way of computing an integral is often to find an antiderivative F' of the given
function f, and then to use the Fundamental Theorem (10.1). How you go about finding
an antiderivative F for some given function f is the subject of this chapter.

The following notation is commonly used for antiderivates:

F(x):/f(x)dx. (10.2)

The integral which appears here does not have the integration bounds a and b. It is called
an indefinite integral, as opposed to the integral in (10.1) which is called a definite
integral. 1t’s important to distinguish between the two kinds of integrals. Here is a list
of differences:
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INDEFINITE INTEGRAL

DEFINITE INTEGRAL

f f(z)dz is a function of .

By definition [ f(z)dz is any
function of x whose derivative

is f(x).

fab f(x)dz is a number.

f: f(z)dz was defined in terms
of Riemann sums and can be
interpreted as “area under the

graph of y = f(z)”, at least
when f(z) > 0.
x is not a dummy variable, for | x is a dummy variable, for
example, [2zdx =2?+C and | example, fol 2¢dx = 1, and

[ 2tdt = ¢* + C are functions of
diffferent variables, so they are
not equal.

f012tdt = 1, so f0123:dx =
[ 2tdt.

10.2 You can always check the answer

Suppose you want to find an antiderivative of a given function f(z) and after a long and
messy computation which you don’t really trust you get an “answer”, F'(z). You can
then throw away the dubious computation and differentiate the F'(x) you had found. If
F’(x) turns out to be equal to f(x), then your F(x) is indeed an antiderivative and your
computation isn’t important anymore.

10.2.1 Example

Suppose we want to find [Inzdz. Emily says it might be F(z) = zInz — . Let’s see if
she’s right:

1
— (zlnz—z)=z-—+1-lnz—1=Inz.
x

dx

Who knows how Emily thought of this', but she’s right! We now know that [Inzdz =
zlne —x+C.

10.3 About “+C”

Let f(x) be a function defined on some interval a < x < b. If F'(z) is an antiderivative of
f(x) on this interval, then for any constant C' the function F(z) = F(z) 4+ C will also be
an antiderivative of f(x). So one given function f(x) has many different antiderivatives,
obtained by adding different constants to one given antiderivative.

Theorem 10.3.1. If Fi(x) and Fy(x) are antiderivatives of the same function f(z) on
some interval a < x < b, then there is a constant C' such that Fi(x) = Fy(x) + C.

1She integrated by parts.
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Proof. Consider the difference G(x) = Fi(z) — Fy(x). Then G'(z) = F{(x) — Fi(x) =
f(z) — f(z) = 0, so that G(x) must be constant. Hence Fj(z) — Fy(x) = C for some
constant. ]

It follows that there is some ambiguity in the notation [ f(z)dz. Two functions F}(z)
and Fy(x) can both equal [ f(z)dz without equaling each other. When this happens,
they (F} and Fy) differ by a constant. This can sometimes lead to confusing situations,
e.g. you can check that

/ZSinmcosxdx =sin’z
/2sinxcosxdx = —cos’z

are both correct. (Just differentiate the two functions sin®z and — cos?z!) These two
answers look different until you realize that because of the trig identity sin® z +cos?z = 1
they really only differ by a constant: sin?z = — cos®z + 1.

To avoid this kind of confusion we will from
now on never forget to include the “arbi-
trary constant +C” in our answer when we
compute an antiderivative.

10.4 Standard Integrals

Here is a list of the standard derivatives and hence the standard integrals everyone should
know.

anrl
/:C"dx: +C for all n # —1
1
/—dx:1n|x|+0
x

sinzdx = —cosx +C

tanzdr = —Ilncosxz + C

/cos:cda: =sinz + C

1
/ dx = arctanz + C

1+ 22
! d inz+ C ( u +C)
— A = arcsinx — — — arccosx
V11— 22 2
dz 1. 1+sinzx T T
=—-In——+C for ——<xz<—.
/cosx 5" —sinz | TRty
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All of these integrals should be familiar except for the last one. You can check the last
one by differentiation (using In § = Ina — Inb simplifies things a bit).

10.5 Method of substitution

The chain rule says that
dF(G(x))
dx
so that

10.5.1 Example

Consider the function f(z) = 2zsin(z? + 3). It does not appear in the list of standard
integrals we know by heart. But we do notice? that 2x = %(xQ + 3). So let’s call
G(x) = 2? + 3, and F(u) = — cosu, then

F(G(z)) = — cos(z* + 3)

and 4F(C
M — Sin(gjz + 3) . 2x e f(x)’
dz —_—— N
Fi(G) @@
so that

/21: sin(z® 4+ 3) dz = — cos(z® + 3) + C.

The most transparent way of computing an integral by substitution is by introducing
new variables. Thus to do the integral

/ F(G(2))G'(z) da

where f(u) = F'(u), we introduce the substitution v = G(x), and agree to write du =
dG(z) = G'(x)dz. Then we get

/f(G(a:))G'(x) dzr = /f(u) du=F(u)+C.
At the end of the integration we must remember that u really stands for G(z), so that
/f(G(x))G'(a:) dz = F(u) + C = F(G(x)) + C.

For definite integrals this implies

/ f(G(2))G () dz = F(G(b)) — F(G(a)).

2 You will start noticing things like this after doing several examples.
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which you can also write as

b G(b)
/f(G(x))G’(:v)dx:/ f(u) du. (10.3)

G(a)

To see this in action consider watching: (MTube by Michael Penn .

10.5.2 Example

[Substitution in a definite integral. | As an example we compute

1
/ T dz,
o 1+ a2

using the substitution u = G(z) = 1 + 2%, Since du = 2z dx, the associated indefinite

integral is
1 1
/ xd % / —du.
1+ 12~ U

M %du

1
u

S
I

To find the definite integral you must compute the new integration bounds G(0) and G(1)
(see equation (10.3).) If z runs between x = 0 and x = 1, then u = G(z) = 1 + z? runs
between u =14 0% =1 and u = 1 + 12 = 2, so the definite integral we must compute is

1 2
1

/ * dx—%/ —du,
o 1+a? Lu

which is in our list of memorable integrals. So we find

L gt [ du il = 1o
o 11 a2 x_ilau_i[nuh_in‘

10.6 The double angle trick

If an integral contains sin®z or cos?z, then you can remove the squares by using the
double angle formulas from trigonometry.

Recall that

cos’a —sin?a = cos2a  and  cos’a +sin®a =1,

Adding these two equations gives
9 1
cos”a = o (cos2a + 1)
while substracting them gives

sin“a = = (1 — cos2a) .

N | —
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10.6.1 Example

The following integral shows up in many contexts, so it is worth knowing;:

1
/COS2CL’dJ} = 5/(1 + cos 2z)dx

1 1
:§{x+§sin2x}+0

1
:§+Zsin2x+0.

Since sin 22 = 2sin z cos z this result can also be written as

1
/coszxdng—i- Esinxcosx—FC.

If you don’t want to memorize the double angle formulas, then you can use “Complex
Exponentials” to do these and many similar integrals. However, you will have to wait
until we are in §12.6 where this is explained.

10.7 Integration by Parts

The product rule states

d dF(z)
L r@oe) = o) + pa 2

and therefore, after rearranging terms,

dG(z) d
de  dx

This implies the formula for integration by parts

/F(x)de<x) dz = F(x)G(x) — / dF(m)G(m) dz.

T dx

F(x)

10.7.1 Example — Integrating by parts once

x e de=_x € —/ e’ 1 dr=uxe®—e"+C.

N~ N~ —~ N~
F(z) G'(x) F(z) G(z) G(z) F'(z)

Observe that in this example e* was easy to integrate, while the factor x becomes an easier

function when you differentiate it. This is the usual state of affairs when integration by

parts works: differentiating one of the factors (F'(x)) should simplify the integral, while

integrating the other (G’(x)) should not complicate things (too much).

Another example: sinz = £ (— cosz) so
xr

/xsinxdx = z(—cosx) —/(—cosx) -1dr == —xcosx +sinz + C.

The reader may want to watch this (MTube} by Michael Penn to reinforce this technique.
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10.7.2 Example — Repeated Integration by Parts

Sometimes one integration by parts is not enough: since e** = 4 (1¢?*) one has
2x 2x
e e
2?2 e dx=2—— | —2zdx
e 2 2

F(z) G'(z)
2x 2x 2x
9€ e e
=2 —{—2r— [ —2d
2x eQw

2z
€ e
=g — < —2r — —2+
T {4 T 3 C}

1 1 1
— 511262x _ §$62w+162x—0

(Be careful with all the minus signs that appear when you integrate by parts.)

The same procedure will work whenever you have to integrate

/ P(2)e™ da

where P(x) is a polynomial, and a is a constant. Each time you integrate by parts, you
get this

axr azr
€

/P(x)e” der = P(q:)e— —/—P'(x) dx

a a
1P()am 1/PI(>amd
= — xI)e - = xT)e x.
a a

You have replaced the integral [ P(x)e® dz with the integral [ P’(x)e® dx. This is the
same kind of integral, but it is a little easier since the degree of the derivative P'(x) is
less than the degree of P(x).

10.7.3 Example — Emily’s computation

Sometimes the factor G'(x) is “invisible”. Here is how you can get the antiderivative of
In x by integrating by parts:

/ln:cd:z::/ln:c~ 1 dz
=~
F(z) G'(z)

1
:lnw-z—/—-xdx

x
:xlnx—/ldx

=zlhx—x+C.

You can do [ P(z)Inzdz in the same way if P(z) is a polynomial.
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10.8 Reduction Formulas

n _ax
n:/xe dzx.

1 1
I, = x"—e* — /nx"l—eax dz

a

1 n
— Tyttt _ xn—leaa; dz.

a a

Consider the integral

Integration by parts gives you

We haven’t computed the integral, and in fact the integral that we still have to do is of
the same kind as the one we started with (integral of 2" 'e® instead of z"e*). What
we have derived is the following reduction formula

1
I, = —x"e™ — n n—1 (R)
a a

which holds for all n.

For n = 0 the reduction formula says

1 1
Iy = —€e, ie. /e‘” de = —-e™ + C.
a

When n # 0 the reduction formula tells us that we have to compute [,,_; if we want to
find I,,. The point of a reduction formula is that the same formula also applies to I,,_1,
and I,,_», etc., so that after repeated application of the formula we end up with Iy, i.e.,
an integral we know.

10.8.1 Example

To compute [ z3e* dz we use the reduction formula three times:

1 3
]3:_x3eax__12
a a
3 (1 2
— _x3eax_ _{_:L,26am__]1}
a a (a a
3 (1 2 (1 1
— _x3eaz_ _{_I2€ax__ (_xeax__l())}
a a (a a \a a

Insert the known integral I, = %e“’” + C' and simplify the other terms and you get

1 3 6 6
l,?)ea:cdx:_l,3€ax__2$2€ax+_3xeax__4eaac+cr'
a a a a
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10.8.2 Reduction formula requiring two partial integrations

Consider

S, = /:L‘” sin z dz.
Then for n > 2 one has
S, = —x"cosT +n / 2" eoszda
= —z"cosz +nx" 'sinz —n(n — 1) /x”2 sin x dz.
Thus we find the reduction formula
S, = —a"cosx +naz" tsinz — n(n —1)S,_».
Each time you use this reduction, the exponent n drops by 2, so in the end you get either
Sy or Sy, depending on whether you started with an odd or even n.
10.8.3 A reduction formula where you have to solve for I,

We try to compute
I, = /(sin x)"dx

by a reduction formula. Integrating by parts twice we get
I, = /(sin x)" sinz dzx
= —(sinz)" ' cosx — /(— cos)(n — 1)(sinz)" 2 cos v dx

= —(sinz)" ' cosx + (n — 1) /(sin z)"? cos® z dx.

22 =1 — sin?z, which gives

We now use cos
I, = —(sinz)" ' cosz + (n — 1) / {sin"?z —sin"z} dz
= —(sinz)" tecosx + (n — 1)L, 5 — (n —1)I,.

You can think of this as an equation for I,,, which, when you solve it tells you

nl, = —(sinz)" ‘cosz + (n — 1)1,_»
and thus implies
1 . n—1 n—1
I, =——sin" "zcosx + ——1, 5. (8)
n n

Since we know the integrals
Iy = /(sinx)odx = /dx =x+C and [} = /sinxdx = —cosz+C
the reduction formula (8) allows us to calculate I,, for any n > 0.
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10.8.4 A reduction formula which will be handy later

In the next section you will see how the integral of any “rational function” can be trans-
formed into integrals of easier functions, the hardest of which turns out to be

dx
L=

When n =1 this is a standard integral, namely

d
I, = / ] —I—xﬁ = arctanx + C.

When n > 1 integration by parts gives you a reduction formula. Here’s the computation:

.@::/kl+x%—”¢p

X

— o /:v (—n)(1+ :UQ)*n*l 2xdx
2
T T
= At + 2n/ DR dx

Apply
22 (1+a?) -1 1 1

(1 + x2)n+1 - (1 + x2)n+1 - (1 + xZ)n (1 + x2)n+1

/ - d-—/ ! ! de =1, —1I
T i B WSS R R Tl

Our integration by parts therefore told us that

to get

I, = m + 2”(In - In+1)7

which you can solve for I,,,1. You find the reduction formula

1 T 2n —1

— I,.
2n (14 22)" * 2n

]n—l—l -

As an example of how you can use it, we start with Iy = arctan x 4+ C, and conclude that

dx
/m =1l =14

1 v 21—,
T2 1142 2.1 !

1 T 1
= Em—{—iarctanx—i—C.
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Apply the reduction formula again, now with n = 2, and you get

dx
/m =1Is3=1

1 v 221,
T 2.2(1+222 2.2 7

SRS 1 1 U g
(1—|—§C2>2 1 21—|—5L‘2 2aI'C anx
1 v +
4(1+x2>2

e L

3_ ~ 3
ST 22 + garctanz + C.

10.9 Partial Fraction Expansion

A rational function is one which is a ratio of polynomials,

P(x)  ppa" +ppax™ 4+ pix+po

flx) = = .
(@) Q(r)  qgr?+ qa129 M+ -+ T + qo

Such rational functions can always be integrated, and the trick which allows you to do
this is called a partial fraction expansion. The whole procedure consists of several
steps which are explained in this section. The procedure itself has nothing to do with
integration: it’s just a way of rewriting rational functions. It is in fact useful in other
situations, such as finding Taylor series (see Part 11 of these notes) and computing
“Inverse Laplace transforms” (see MATH 319.)

10.9.1 Reduce to a proper rational function

A proper rational function is a rational function P(x)/Q(x) where the degree of P(x)
is strictly less than the degree of Q(z). the method of partial fractions only applies to
proper rational functions. Fortunately there’s an additional trick for dealing with rational
functions that are not proper.

If P/Q isn’t proper, i.e. if degree(P) > degree(Q), then you divide P by @, with result

Plz) Rlz)
Q) Qlx)
R(

x) is the remainder after division. In practice you
) and R(x).

= S(z) +

where S(x) is the quotient, and
would do a long division to find S(z

10.9.2 Example

Consider the rational function

2t —2r 42
o2 —1
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Here the numerator has degree 3 which is more than the degree of the denominator (which
is 2). To apply the method of partial fractions we must first do a division with remainder.
One has

|z +1 =5(2)
=12 —2r +2
x3 —x
—x 42 = R(x)
so that 5 g ) )
x° — 2x + —x +
fla) = 2—-1 2?2 —1

When we integrate we get

—x+2
2217

The rational function which still have to integrate, namely is proper, i.e. its nu-

merator has lower degree than its denominator.

10.9.3 Partial Fraction Expansion: The Easy Case

To compute the partial fraction expansion of a proper rational function P(x)/Q(x) you
must factor the denominator Q(x). Factoring the denominator is a problem as difficult
as finding all of its roots; we shall only do problems where the denominator is already
factored into linear and quadratic factors, or where this factorization is easy to find.

In the easiest partial fractions problems, all the roots of Q(z) are real numbers and
distinct, so the denominator is factored into distinct linear factors, say

P() _ P(z)
Q) ~ (r—a)(w—az)-(—a,)

To integrate this function we find constants A;, As, ..., A, so that

P(l’) A1 AQ An
e —|_ + tte + M
Qlx) z—a1 x—ae T —ay

Then the integral is

P
/QE:C; de=Ailn|z —ai + Az In |z — a| + - + Ay Infe — a,| + C.
T

One way to find the coefficients A; in (#) is called the method of equating coeffi-
cients. In this method we multiply both sides of (#) with Q(z) = (z —ay) - - - (x — a,).
The result is a polynomial of degree n on both sides. Equating the coefficients of these
polynomial gives a system of n linear equations for Ay, ..., A,. You get the A; by solving
that system of equations.
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Another much faster way to find the coefficients A; is the Heaviside trick®. Multiply
equation (#) by z — a; and then plug in? z = a;. On the right you are left with A; so
Plr)(z —ai)|  _ P(a;)

Q(l’) r=a,; - (ai - al) T (ai - ai—l)(az‘ - ai+1) s (CLZ‘ — an)'

A =

10.9.4 Previous Example continued

To integrate we factor the denominator,

2 —1=(z—1)(z+1).

—x+ 2

xr2 —

then is

The partial fraction expansion of

—x+2 —x+2 A B
- -y ()

2—1 (z—1)(@+1) =z—-1 z+1

Multiply with (x — 1)(z + 1) to get
—x+4+2=Ax+1)+B(x—-1)=(A+ B)x+ (A— B).

The functions of z on the left and right are equal only if the coefficient of x and the
constant term are equal. In other words we must have

A+B=—-1land A— B =2.

These are two linear equations for two unknowns A and B, which we now proceed to
solve. Adding both equations gives 24 = 1, so that A = %; from the first equation one
then finds B=—-1—-A = —%. So

—r+2  1/2 3/2
2—-1 z—-1 z+1

Instead, we could also use the Heaviside trick: multiply (f) with x — 1 to get

—x+2_A Bx—l

z+1 + z+1

Take the limit x — 1 and you find

—1+2
1+1

1
=A, ie. A=—.
, 1.e 5

3 Named after OLIVER HEAVISIDE, a physicist and electrical engineer in the late 19th and early 20ieth
century.

4 More properly, you should take the limit  — a;. The problem here is that equation (#) has x — a;
in the denominator, so that it does not hold for z = a;. Therefore you cannot set = equal to a; in any
equation derived from (#), but you can take the limit  — a;, which in practice is just as good.
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Similarly, after multiplying (1) with = + 1 one gets

—x+2:Ax+1+B

z—1 z—1

and letting x — —1 you find

p=_tZbh+2_ 3
(—1) —1 2
as before.

Either way, the integral is now easily found, namely,

S _92r+1 2 —r+2

2 —1 2 2 —1
22 /2 3/2
= - d
2+x+/{x—1 x+1} v
1‘2

1 3
:§+x+§1n|x—1|—§1n|x+1|+0.

10.9.5 Partial Fraction Expansion: The General Case

Buckle up.

When the denominator Q(x) contains repeated factors or quadratic factors (or both)
the partial fraction decomposition is more complicated. In the most general case the
denominator Q(x) can be factored in the form

Q(z) = (x —a)™ - (x —a)" (@® + bz 4+ )" - (22 + b + ¢n)™ (10.4)
Here we assume that the factors x —aq, ..., x — a, are all different, and we also assume
that the factors z? + bz + ¢y, ..., 22 + b,z + ¢, are all different.

It is a theorem from advanced algebra that you can always write the rational function
P(z)/Q(x) as a sum of terms like this

P(x) A Bx +C
Q(x) _H'+(x—ai)k+'”+(xQ—I—bjx—l—cj)E

How did this sum come about?

(10.5)

For each linear factor (z — a)* in the denominator (10.4) you get terms

Ay Ag Ayg
+ s Tt —
r—a (r—a) (x —a)
in the decomposition. There are as many terms as the exponent of the linear factor that
generated them.

For each quadratic factor (z? + bz + ¢)¢ you get terms
Bix + Cy Box 4+ Cy Bz + Cy,
22+br+c (2?2 +br+c)? L (22 4+ bx + )t
Again, there are as many terms as the exponent ¢ with which the quadratic factor appears
in the denominator (10.4).
In general, you find the constants A, B and C'_ by the method of equating coefficients.
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10.9.6 Example

To do the integral

/ r? + 3
dz
x?(x 4+ 1)(22 + 1)2

apply the method of equating coefficients to the form

.T2+3 _A1+A2+ A3 +Bl$—|—cl+Bg,iE+Cg
w2z + D) (22 +1)2 22 x+1 2+ 1 (22 +1)2°

(€X)

Solving this last problem will require solving a system of seven linear equations in the
seven unknowns Aj, Ay, As, By, C, By, Cs. A computer program like Maple can do this
easily, but it is a lot of work to do it by hand. In general, the method of equating
coefficients requires solving n linear equations in n unknowns where n is the degree of
the denominator Q(z).

See Problem 613 for a worked example where the coefficients are found.

Unfortunately, in the presence of quadratic factors or re-
peated linear factors the Heaviside trick does not give
the whole answer; you must use the method of equating
coefficients.

@ ——p
L
@ ——
@ ——p

Once you have found the partial fraction decomposition (EX) you still have to integrate
the terms which appeared. The first three terms are of the form [ A(x — a) P dz and
they are easy to integrate:

A
/ dx:Aln|x—a|+C’
r—a

and

Adx A
/<x—a>p:<1—p><x—a>pl+0

if p > 1. The next, fourth term in (EX) can be written as

Bz + C4 x dx
—dzx=1"B dz + C
/ 2+ 1 * 1/x2—|—1 T l/xQ—i—l

B
= 71 ln(l'2 + 1) + Cl arctan x + Cintegration const.

While these integrals are already not very simple, the integrals

Bx +C .
/md.f Wlthp>1

which can appear are particularly unpleasant. If you really must compute one of these,
then complete the square in the denominator so that the integral takes the form

Ax + B
/ (z +b)2 + a2y de.
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After the change of variables u = x + b and factoring out constants you have to do the

integrals
/ du and / udu
(u? 4 a?)p (u? + a?)p’

Use the reduction formula we found in example 10.8.4 to compute this integral.

An alternative approach is to use complex numbers, which are on the menu later. If
you allow complex numbers then the quadratic factors x? + bz + ¢ can be factored, and
your partial fraction expansion only contains terms of the form A/(x — a)?, although A
and a can now be complex numbers. The integrals are then easy, but the answer has
complex numbers in it, and rewriting the answer in terms of real numbers again can be
quite involved.

Before attempting the problems in this section the reader might make use of tricks out-
lined in Yul® by Michael Penn .

10.10 PROBLEMS

DEFINITE VERSUS INDEFINITE INTEGRALS

510. Compute the following three integrals:

A:/x%lx, B:/th, C:/a:th.

511. One of the following three integrals is not the same as the other two, which one?

4 4 4
A:/ z 2 dz, B:/ t=2dt, cz/ z 2 dt.
1 1 1
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https://www.youtube.com/watch?v=yKMnm9tH4q4&list=RDCMUC6jM0RFkr4eSkzT5Gx0HOAw&index=21

BASIC INTEGRALS

The following integrals are straightforward provided you know the list of standard antideriva-
tives. They can be done without using substitution or any other tricks.

3
512. /{6x52x_47aj 522. / Vb +2dx
3
+3/x — 5+ 4e” + 7} dx .
523./ (z — 1)(32 + 2) dz
513. /(x/a+a/x+x“+ax+ax)dx 1

4
514. /{f—é/:?w T 6" +1}de 524. /1(\/i2/ﬁ)dt

3/]:2
8 1
© 1\ 525. / <3T—|—) dr
515. /{2 +(3)"} dz . v r
0 0 5
516. / (5y* — 6y + 14) dy 526. 1(:[; +1)%dx
-3 —
e .2
71 1 527 / wdm
sir. ['(A- 1) w =
9 2
246 42 / ( 1 )
528. Vr+—| dx
518. /1 = dt . 7
2241 L -
519. / dz 529. ( w5+ Va ) dz
1 VT 0
2 8 r—1
520. / (z° — 1)*da 530. / = dz
0 1 x
2 w/3 '
521. / (x4 1/2)* dx 531. //4 sin t dt
1 T
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/2 2
532. / (cos@ + 2sin6) df 544. / (x — 2|z|) dz
0 ~1
/2 2 )
533. / (cos @ + sin 26) df 545. / (z° — |z —1]) dzx 7387
0 0
T tanx 2
534. / dx 546. / f(x) dz where
27/3 COS T 0
Lifo<r<i
7T/2 t _ X 1 -~ 9
535.u/ L /(@) {xi if1<z<2.
7r/3 S x
V3 g 547. / f(z) dx where
536. / — dx -7
1 1+ A x, if —7m<ux<0,
€Tr) =
537 /0'5 dx sinz, if0<ax<m.
’ / 2
0 1—w 548. Compute
8
538. / (1/z)dx 2
4 I:/ 2:c(1+:62)3da:
In6 0
539. /1n3 8¢” d in two different ways:
0 (i) Expand (1 + 22)?, multiply with 2z,
540. / 2 dt and integrate each term.
8 (ii) Use the substitution u = 1 + 2.
541. /e 3 dr 549. Compute
_e2 T
3 15=/éﬂ1+ﬁYWm
542. / |z? — 1| dz
-2
2 550. If f'(z) =& —1/2% and f(1) = 1/2 find
543.(/5|x~—13|dx 1387 F(x) fl@) / =y
-1 :

551. Consider f02 |x — 1| dz. Let f(x) = |x — 1| so that

r—1 ifz>1
f@V‘{1—x if 2 <1

Define

Then since F' is an antiderivative of f we have by the Fundamental Theorem of Calculus:

2 2 22 02
[ le=lde= [t e = Py - FO) = (5 -2 - 0-5) =0

But this integral cannot be zero, f(x) is positive except at one point. How can this be?
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BASIC SUBSTITUTIONS

Use a substitution to evaluate the following integrals.

2 wdu 2 n2x
552. 559. dx
1 1 -+ U2 1 X
2
rdx 2
In(2
553. /1 1+a2 560. / n@at) g 1387
T
554. / sin’ 0 cos 6 df V2
561. (1 +26H)104d¢
3 £=0
555.
/2 Hm 562 g 2p)*d
o / sin 92 . . /2 sin p(cos 2p)* dp
1+cos?z
5T, / sin 2x 563. /ae_o‘2 do
1+ smx

1

558. /z\/l—szz 564. /etdt
0

t2

INVERSE TRIGONOMETRIC FUNCTIONS

565. The inverse sine function is the inverse function to the (restricted) sine function, i.e.
when —7/2 < 0 < 7/2 we have

0 = arcsin(y) <= y =siné.

The inverse sine function is sometimes called Arc Sine function and denoted 6 = arcsin(y).
We avoid the notation sin~!(z) which is used by some as it is ambiguous (it could stand for
either arcsinz or for (sinz)~! = 1/(sinx)).

(i) If y =sinf, express sinf, cosd, and tan in terms of y when 0 < 0 < 7/2.
(if) If y = sin#, express sinf, cosf, and tan 6 in terms of y when 7/2 < 6 < 7.

(iif) If y = sin#, express sin#, cosf, and tané in terms of y when —7/2 < 6 < 0.

e

566. Express in simplest form:

(iv) Evaluate using the substitution y = sin 6, but give the final answer in terms

of y.

1
ln 1
In16

(i) cos(arcsin™!(x)); (if) tan{arcsin

} ; (iii) sin (2 arctan a)

567. Draw the graph of y = f(x) = arcsin(sin(a:)), for =27 < x < +27. Make sure you get the
same answer as your graphing calculator.
V32 g
568. Use the change of variables formula to evaluate / Nigwr first using the substitution
1/2 -
x = sinwu and then using the substitution = = cosu.
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569. The inverse tangent function is the inverse function to the (restricted) tangent function,
i.e. for /2 < 0 < /2 we have

0 = arctan(w) <= w = tané.

The inverse tangent function is sometimes called Arc Tangent function and denoted 6 =
arctan(y). We avoid the notation tan~!(x) which is used by some as it is ambiguous (it could
stand for either arctanz or for (tanx)~! = 1/(tanz)).

(i) If w = tan#, express sinf and cosf in terms of w when

(@) 0<O<m/2 (b) m/2<0<m () —m/2<60<0

5 using the substitution w = tan 6, but give the final answer in terms of

d
(if) Evaluate / 7 v

+w
w.

570. Use the substitution x = tan(f) to find the following integrals. Give the final answer in
terms of x.

(a)/mdx (b)/(1+1x2)2dx (c)/\/;:‘:‘”igv2

1387
dx L e / dx
571. — - 581. T S S
/\/1—:r2 576. /_1 Nz 357 3z2 + 62 + 6
572. /dx erp [V _da v
N . e d
4 * /0' V 1-— .1'2 582. / 27:1},
573 / AT ey dz p el
: — 2 578. O a
V2r —x /xQ—i—l’ cg3. / V3 dx
- rdx da ; 22+ a2’
V1 — 424 579. P
1/2 dz d
575. / — Y
—1/2 V4 — 2?2 580 /74—3.@27

INTEGRATION BY PARTS AND REDUCTION FORMULAE

584. Evaluate /x” Inz dx where n # —1.

7387
585. Evaluate / e sin bx dz where a® + b? # 0. [Hint: Integrate by parts twice.]

7387
586. Evaluate /e‘w cos br dz where a® + b? # 0.

1387

587. Prove the formula
/a:”em dr =z"e* —n / 2" e dz

206



and use it to evaluate / 22e® du.

588. Prove the formula

) 1 e n—1 .
/sm”xdx:—cosxsm” Lo+ sin" 2 z de, n#0
n n

589. Evaluate / sin? z dz. Show that the answer is the same as the answer you get using the

half angle formula.

™
590. Evaluate/ sin'* z d. 1387
0

591. Prove the formula

1 . _ n—1 _
/cos”xdm: “sinz cos" a4 cos" 2 z dz, n#0
n n

/4
and use it to evaluate / cos? z du. 1387
0
592. Prove the formula
m—+1 1 n
/xm(lnx)" do =72 ()" n /azm(lnx)"_l dz, m# —1,
m+1 m+1
and use it to evaluate the following integrals: 1387
593. /lnxdx 1387
594. / (Inz)?dz 1387
595. /a:‘?’(lngﬁ)2 dz
596. Evaluate / 2! Inz dz by another method. [Hint: the solution is short!] 1387

597. For an integer n > 1 derive the formula

1
/tan” rdx = 1 tan” 'z — /tan”2 zdz

/4
Using this, find / tan® z dz by doing just one explicit integration. 1387
0
Use the reduction formula from example 10.8.4 to compute these integrals:
) (T+a?)3

) (14 22)*

600. /(11(12)4 [Hint: [z/(1+ 2?)"dx is easy.]
x

1+=x
601. ——d
/ 1+222"
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602. The reduction formula from example 10.8.4 is valid for all n £ 0. In particular, n does not
have to be an integer, and it does not have to be positive.

Find a relation between / V1422

603. Apply integration by parts to

dz and /dx
V1+ 22

by setting n = —%.

1
/d:[:
x

Let u = % and dv = dx. This gives us, du = _:T% dr and v = .

/idx:%x@—/gzém
/idw-l—i—/id:p

and subtracting the integral from both sides gives us 0 = 1. How can this be?

Simplifying

INTEGRATION OF RATIONAL FUNCTIONS

Express each of the following rational functions as a polynomial plus a proper rational function.

(See §10.9.1 for definitions.)

T
604. ———— 387
pEaE T
3 + 2z
605. ———— 387
3;3 _ 4 ) .l-

COMPLETING THE SQUARE

3 2
> —x*—x—5
606. . 388
3 —4 f
=1
607. ——. 388
2 -1 f

Write ax?+bx+c in the form a(z+p)?+g¢, i.e. find p and ¢ in terms of a, b, and ¢ (this procedure,
which you might remember from high school algebra, is called “completing the square.”). Then

evaluate the integrals

dz
608. —_— 388
/ 22 + 62 + 8’ f
dx
609. _
/x2+6x+10’ 1388
dzx
610. _— 388
/ 522 4 20x + 25 f

611. Use the method of equating coefficients
to find numbers A, B, C such that

z2+3 A B C

a:(a:+1)(:6—1):5 x+1+:c—1

and then evaluate the integral

2 +3
[ ioe 1

+388

612. Do the previous problem using the Heav-
iside trick.

1388
2
613. Find the integral /de.
x?(x — 1)
1389

Evaluate the following integrals:

-2 .4
~1
614. / L da
_5 T +1

3 dx
615. -
/ 4+ 1
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x° dx / dx
624. _—
616. /:52_ 1 x(m2+1)2

z° de 625. / _dr 389
617. /3:4_1 2@ 1) f
1
3 626. / dx
618. / s do 1389 (@ —1)(z—2)(x—3)
2?24+ 1
619. / - d‘rl +389 (z—1)(z—2)(z —3)
err —
341
T 628. / dx
620. [ 9T (=1 =2z —3)
vIite® 629.
e’ dx 2 dx
621. _— a) Compute / ———— where h is a pos-
/62x+2€x+2 1389 (®) P 1 m(x—h)w P
d itive number.
622. /1 xm 1389 (b) What happens to your answer to (a)
te when h — 07 ?
dx 2dx
623. [ —° dz
/x(mz 1) (c) Compute/1 =

MISCELLANEOUS AND MIXED INTEGRALS

630. Find the area of the region bounded by the curves

2 2 —8r+7

e e Y= 4+ Y= 2 "8z + 16

631. Let P be the piece of the parabola y = z? on which 0 < z < 1.
(i) Find the area between P, the z-axis and the line x = 1.
(ii) Find the length of P.

632. Let a be a positive constant and
F(x) —/ sin(af) cos(f) d6.
0

[Hint: use a trig identity for sin A cos B, or wait until we have covered complex exponentials
and then come back to do this problem.]

(i) Find F(z) if a # 1.
(ii) Find F(x) if a = 1. (Don’t divide by zero.)

Evaluate the following integrals:

@ 1/3 dx
633. / rsinx dx 1389 636. / _rar 389
0 1/4 V1—a? f
a
634. / 22 cos z dx 1389
0
4 4
rdzx dx
635. e 389 637. _— 389
/3 r? —1 f /3 v —1 f
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rdx 4
638. —_— 389 648. d
‘/fﬂdx+ﬂ f /kw—DWx+U ’
1
639. / 649. / dz
x? — V1—2x—2?
640. 650. / rzlnzx dx
/ 36 — x2 1
641. / il 4+ 1)de 1389 651. /2x In(z + 1) dx 1389
x
2 d e3
642. / v +3)de 652. / 2 Inzde
x4 — 222 2
643. / x + cos(x)) dz 653. / z(lnz)® do
1
644. /(em +In(z)) dz 654. /arctan(\/i) dz 1389
3% + 2z — 2
645. /xlj;xldx 655. /x(cosa:)2 dz
4 ™
646. J/:de 656.§/)\/1—%cosahu)du
x* — 16 0
x 1
647. —=d 657. d
/ @—13 " / L+ sin(z) 959
658. Find
/ dx
z(z—1)(z —2)(z —3)
and
/ (23 +1)dx
z(z—1)(z —2)(z —3)
659. Find

/ dz
B +a?+a+1

1389

660. You don’t always have to find the antiderivative to find a definite integral. This problem
gives you two examples of how you can avoid finding the antiderivative.

(i) To find
]_/W/2 sinx dz
~Jo sinz+cosw

you use the substitution u = 7/2 — 2. The new integral you get must of course be equal to the
integral I you started with, so if you add the old and new integrals you get 2I. If you actually
do this you will see that the sum of the old and new integrals is very easy to compute.

/2
(if) Use the same trick to find / sin? z dz
0

661. Graph the equation o’ +y 5 =as. Compute the area bounded by this curve.
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662. Tue Bow-TiE GRAPH. Graph the equation y? = 2* — 25, Compute the area bounded by

this curve.

663. THE FAN-TAILED FisH. Graph the equation

1—=x
2_ .2
g <1+w)'

Find the area enclosed by the loop. (HINT: Rationalize the denominator of the integrand.)

664. Find the area of the region bounded by the curves

T =2, y =0, y:xlng

665. Find the volume of the solid of revolution obtained by rotating around the xz—axis the region
bounded by the lines x = 5, x = 10, y = 0, and the curve

x

v VaZ 25

666.

1
How to find the integral of f(x) =

cos
(i) Verify the answer given in the table in the lecture notes.

(if) Note that

1 cos T COS T
2

cosx cos?x 1—sin

x b
and apply the substitution s = sinx followed by a partial fraction decomposition to compute
dz

coszt”

RATIONALIZING SUBSTITUTIONS

Recall that a rational function is the ratio of two polynomials.

667. Prove that the family of rational functions is closed under taking sums, products, quotients
(except do not divide by the zero polynomial), and compositions.

To integrate rational functions of z and v/1 + 22 one may do a trigonometric substitution, e.g.,
r = tan(f) and 1+ tan?(f) = sec?(#). This turns the problem into a trig integral. Or one could
use 14 sinh?(t) = cosh?(t) and convert the problem into a rational function of ef.

Another technique which works is to use the parameterization of the hyperbola by rational
functions:

668. Show that y? — 22 = 1 and hence y = /1 + 22.

Use this to rationalize the integrals, i.e, make them into an integral of a rational function of ¢.
You do not need to integrate the rational function.
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4
669. /\/1 + 22dx 670. /f” da
V1422

ds
671. I
1389 / Vs24+2s+3

672. Show that t =z +y =2+ V1 + 22
Hence if

/g(:c) dz = /f(t) dt = F(t) + C

then
/g(x) de =F(x+Vv1—22)+C.

673. Note that x = \/y% — 1. Show that ¢ is a function of y.

1389
Express these integrals as integrals of rational functions of t.
dy 54
674. —_— 389 S ——
/ - 1)1 t 676. / (563 ds
4
Y ds
675. —d 677. —
[ Gt |
678. Note that 1 = (%)2 + (%)2 What substitution would rationalize integrands which have
V1 — 22 in them? Show how to write ¢ as a function of z.
1390
Express these integrals as integrals of rational functions of .
4
679. /\/1 —22dz £390 682. [ — > _ds
(36 _ 82)3/2
dz
680. / 390 683. / ds
V1—2? (s +5)Vs%+bs

22
681. /mdz
RATIONAL FUNCTIONS OF sin AND cos

Examples of such integrals are:

/ (cos6)? — (cos0)(sinf) + 1 o
(cos0)2 + (sinf)3 + (cosf) + 1

or

do

/ (sin0)3(cos 0) + (cosf) + (sin ) + 1
(cos0)?(sin6)3 — (cos 6)

The goal of the following problems is to show that such integrals can be rationalized, not to
integrat the rational function.
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684. Substitute z = sin(f) and express [ r(sin(f),cos(d)) df as a rational function of z and

V1 — 22,

1390
685. Express it as rational function of ¢.

1390
686. Express t as a function of 6. 1390
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Chapter 11

Taylor’s Formula and Infinite Series

All continuous functions which vanish at t = a
are approximately equal at x = a,
but some are more approximately equal than others.

11.1 Taylor Polynomials

Suppose you need to do some computation with a complicated function y = f(z), and suppose
that the only values of x you care about are close to some constant z = a. Since polynomials
are simpler than most other functions, you could then look for a polynomial y = P(z) which
somehow “matches” your function y = f(z) for values of x close to a. And you could then replace
your function f with the polynomial P, hoping that the error you make isn’t too big. Which
polynomial you will choose depends on when you think a polynomial “matches” a function. In
this chapter we will say that a polynomial P of degree n matches a function f at t =a if P
has the same value and the same derivatives of order 1, 2, ..., n at x = a as the
function f. The polynomial which matches a given function at some point « = « is the Taylor
polynomial of f. It is given by the following formula.

Definition 11.1.1. The Taylor polynomial of a function y = f(x) of degree n at a point a is
the polynomial

) (q
(a:—a)Q—i—---—i—fn!()(x—a)". (11.1)

f"(a)
2!

T f(z) = fa) + f'(a)(x — a) +

(Recall that n! =1-2-3---n, and by definition 0! = 1.

Theorem 11.1.1. The Taylor polynomial has the following property: it is the only polynomial

P(x) of degree n whose value and whose derivatives of orders 1, 2, ..., and n are the same as
those of f, i.e. it’s the only polynomial of degree n for which

P(a) = f(a), P'(a)=f(a), P"(a)=["(a), ..., P™(a)=f"(a)
holds.
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Proof. We do the case a = 0, for simplicity. Let n be given, consider a polynomial P(z) of
degree n, say,
P(z) = (10"‘al-T—i-CQxQ—i—a3x3_|_..._|_CLWJU7L7

and let’s see what its derivatives look like. They are:

P(x) = ay + aix + a2® +  azrd + aszt +

P(x) = ar 4+ 2ax +  3azx?  + dayx® +- -
P(Q)(I‘) = 1-2as + 2-3as3z +  3-dasx® +---
PO(z) = 1-2-3a3 + 2-3-dagx  +---
PW(z) = 1-2-3-day +---

When you set z = 0 all the terms which have a positive power of z vanish, and you are left
with the first entry on each line, i.e.

P(0) =ap, P'(0)=ai, PP(0)=2ay, P®(0)=2-3a3, etc.

and in general

P®)(0) = Klag for 0 < k < n.

For k > n + 1 the derivatives p*) () all vanish of course, since P(z) is a polynomial of degree
n.

Therefore, if we want P to have the same values and derivatives at x = 0 of orders 1,,..., n as
the function f, then we must have kla, = P®)(0) = f*)(0) for all k < n. Thus
(k)
ak:fk'() for 0 <k <n.
O

11.2 Examples

Note that the zeroth order Taylor polynomial is just a constant,

Ty f(z) = f(a),
while the first order Taylor polynomial is
Ti f(z) = f(a) + f'(a)(x — a).
This is exactly the linear approzimation of f(x) for x close to a which was derived earlier in
this text.
The Taylor polynomial generalizes this first order approximation by providing “higher order
approximations” to f.
Most of the time we will take a = 0 in which case we write T, f(z) instead of T)? f(z), and we
get a slightly simpler formula
00 () (o

To.f(z) = f(0) + f'(0)x + 132(‘)x2+~--+fn'()x". (11.2)
You will see below that for many functions f(z) the Taylor polynomials T, f(z) give better and
better approximations as you add more terms (i.e. as you increase n). For this reason the limit
when n — oo is often considered, which leads to the infinite sum

Tof(x) = (0) + f'(0)z + "2(!0)3;2 Iy ';(!O) B

At this point we will not try to make sense of the “sum of infinitely many numbers”.
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11.2.1 Example: Compute the Taylor polynomials of degree 0,
1 and 2 of f(z) =e¢" at a =0, and plot them

One has
flx)=¢" = fl(x) =¢" = f'(z) =¢",

so that

flx) =e"
Lf(r)=1+z+%

Tif(x) =1+

xz

Figure 11.1: The Taylor polynomials of degree 0, 1 and 2 of f(x) = e” at a = 0. The zeroth
order Taylor polynomial has the right value at x = 0 but it doesn’t know whether or not the function
f is increasing at x = 0. The first order Taylor polynomial has the right slope at x = 0, but it
doesn't see if the graph of f is curved up or down at x = 0. The second order Taylor polynomial
also has the right curvature at x = 0.

Therefore the first three Taylor polynomials of e® at a = 0 are

The graphs are found in Figure 11.1. As you can see from the graphs, the Taylor polynomial
Tof(z) of degree 0 is close to e* for small x, by virtue of the continuity of e*

The Taylor polynomial of degree 0, i.e. Ty f(z) = 1 captures the fact that e® by virtue of its
continuity does not change very much if x stays close to = = 0.
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The Taylor polynomial of degree 1, i.e. T f(x) = 1 4+ = corresponds to the tangent line to the
graph of f(x) = €%, and so it also captures the fact that the function f(z) is increasing near
z = 0.

Clearly T f(x) is a better approximation to e* than 7o f(x).

The graphs of both y = Ty f(x) and y = T3 f(z) are straight lines, while the graph of y = e* is
curved (in fact, convex). The second order Taylor polynomial captures this convexity. In fact,

the graph of y = Ty f(x) is a parabola, and since it has the same first and second derivative at
x = 0, its curvature is the same as the curvature of the graph of y = e* at z = 0.

So it seems that y = T f(z) = 1 + x + 22/2 is an approximation to y = ¥ which beats both
Tof(x) and Ty f(x).

11.2.2 Example: Find the Taylor polynomials of f(x) =sinx

When you start computing the derivatives of sinx you find

f(x)=sinz, f'(z)=cosz, [f'(z)=—sinz, [O(z)=—cosz,

and thus
9 (z) =sinz.

So after four derivatives you’re back to where you started, and the sequence of derivatives of
sinx cycles through the pattern

sinz, cosx, —sinx, —cosx, sinx, cosr, —sinx, —cosx, sinz, ...
on and on. At z = 0 you then get the following values for the derivatives fU)(0),

i |1]2]3]4[5]6[7]8 |-
fOm)[oftjo]-1]o[1][o]-1] -

This gives the following Taylor polynomials

Tof(x) =0
Tif(z) =z
Tof(z) =2z
5
Tgf(l') =T — 3!
3
Tyf(x) =2 — x!
3 5
Rf(x)zx—%—i—%

Note that since f(2(0) = 0 the Taylor polynomials T} f(z) and Tb f(z) are the same! The second
order Taylor polynomial in this example is really only a polynomial of degree 1. In general the
Taylor polynomial T, f(z) of any function is a polynomial of degree at most n, and this example
shows that the degree can sometimes be strictly less.
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N\

\\\T: ,f(:r) — sinz
Ty

Figure 11.2: Taylor polynomials of f(z) = sinz

11.2.3 Example — Compute the Taylor polynomials of degree
two and three of f(z) =1+z+2?+ 2% at a =3

Solution: Remember that our notation for the n'" degree Taylor polynomial of a function f
at a is T f(x), and that it is defined by (11.1).

We have
fl(x) =142z +32% f'(x)=2+6x, f"(x)=6

Therefore f(3) =40, f'(3) =34, f”(3) =20, f(3) = 6, and thus

T5 f(z) = 40 + 34(z — 3) + 22—?(35 —3)2 =40+ 34(z — 3) + 10(z — 3)°. (11.3)
Why don’t we expand the answer? You could do this (i.e. replace (z — 3)% by 22 — 6x + 9
throughout and sort the powers of x), but as we will see in this chapter, the Taylor polynomial
T¢f(x) is used as an approximation for f(z) when x is close to a. In this example T5 f(x) is
to be used when x is close to 3. If x — 3 is a small number then the successive powers z — 3,
(x — 3)%, (x — 3)3, ...decrease rapidly, and so the terms in (11.3) are arranged in decreasing
order.

We can also compute the third degree Taylor polynomial. It is

T3 f(x) =40 4 34(x — 3) + ?(x —3)2+ g(:c —3)3
=40 + 34(z — 3) + 16(95 -3+ (x'— 3)3.
If you expand this (this takes a little work) you find that
404 34(x —3) +10(z =32 + (z -3 =1+ + 22 + 23

So the third degree Taylor polynomial is the function f itself! Why is this so? Because of
Theorem 11.1.1! Both sides in the above equation are third degree polynomials, and their
derivatives of order 0, 1, 2 and 3 are the same at x = 3, so they must be the same polynomial.
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11.3 Some special Taylor polynomials

Here is a list of functions whose Taylor polynomials are sufficiently regular that you can write
a formula for the nth term.

2 3 n
T _ oyt
S T TR
3 5 7 2n+1
el = 2 0 T e
Tony1{sinz} == 31 + 51 71 ot (1) (2n +1)!
2 4 6 2n
B N n
Tgn{cos:c}—1—5—%1—54—”-4—(—1) (2n)!
1
T, {1} —14ao+a?+a3+a2*+. 4" (Geometric Series)
-z
2 3 4 n
x* oz x
To{n(l+ o)} =2 — o+ 5 =+ ()"

All of these Taylor polynomials can be computed directly from the definition, by repeatedly
differentiating f(x). To see this in action consider viewing You[TD) by 3BluelBrown .

Another function whose Taylor polynomial you should know is f(z) = (1 + x)%, where a is a
constant. You can compute 1), f(x) directly from the definition, and when you do this you find

(a=1) », ala=D(a—2) ,

1.2 7 1-2.3
ala—1)---(a—n+1) ,
. (114
Tt 2. 2" (11.4)

This formula is called Newton’s binomial formula. The coefficient of z" is called a binomial

coefficient, and it is written
<“>:“(“_1)”'$“_”+1). (11.5)
n n!

T {1+2)) =1+az+ 2

When a is an integer (Z) is also called “a choose n.”

Note that you already knew special cases of the binomial formula: when a is a positive integer
the binomial coefficients are just the numbers in Pascal’s triangle. When a = —1 the binomial
formula is the Geometric series.

11.4 The Remainder Term

The Taylor polynomial T, f(z) is almost never exactly equal to f(z), but often it is a good
approximation, especially if z is small. To see how good the approximation is we define the
“error term” or, “remainder term”.

Definition 11.4.1. If f is an n times differentiable function on some interval containing a,
then

Ry f(x) = f(x) = T f ()

is called the n'" order remainder (or error) term in the Taylor polynomial of f.

If a = 0, as will be the case in most examples we do, then we write

B f(z) = f(z) = Tuf(2).
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https://www.youtube.com/watch?v=3d6DsjIBzJ4&t=31s

11.4.1 Example

If f(z) = sinz then we have found that Tsf(z) = 2 — £z, so that

Rg{sinz} =sinz — a + $a°.

This is a completely correct formula for the remainder term, but it’s rather useless: there’s
nothing about this expression that suggests that x — %m?’ is a much better approximation to
sinx than, say, = + %3:3.

The usual situation is that there is no simple formula for the remainder term.

11.4.2 An unusual example, in which there s a simple formula

for R, f(x)

Consider f(z) =1 —x + 322 — 1523,
Then you find

Tof(x) =1 —x + 322, so that Rof(z) = f(z) — Tof(z) = —1523.

The moral of this example is this: Given a polynomial f(x) you find its n'™* degree Taylor
polynomial by taking all terms of degree < n in f(x); the remainder R, f(x) then consists of the
remaining terms.

11.4.3 Another unusual, but important example where you can
compute R, f(z)

Consider the function

Then repeated differentiation gives

M) b @y = 2 @)y = 1203
f(.’l?)— (1-%)27 f (x)_ (1_:1:)37 f (.TJ)— (1_:1:)47
and thus 1.9.3
(n) . . . .. .n
() 1— z)nH
Consequently,

1
n!
and you see that the Taylor polynomials of this function are really simple, namely

But this sum should be really familiar: it is just the Geometric Sum (each term is = times
the previous term). Its sum is given by!

1— n+1
Tof(x)=1+z+a’+a°+at+ 42" =— "

1—2a '’

Multiply both sides with 1 — 2 to verify this, in case you had forgotten the formula!
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which we can rewrite as

1 l,n—f—l xn+1
The remainder term therefore is
xn+1
Raf(2) = f(x) ~ Tuf(@) = T—

11.5 Lagrange’s Formula for the Remainder Term

Theorem 11.5.1. Let f be an n+ 1 times differentiable function on some interval I containing
x = 0. Then for every z in the interval I there is a £ between 0 and x such that

FEE)

P f() = (n+1)!

(€ between 0 and x means either 0 < £ < z or z < £ < 0, depending on the sign of x.)

This theorem (including the proof) is similar to the Mean Value Theorem. The proof is a bit
involved, and I've put it at the end of this chapter.

There are calculus textbooks which, after presenting this remainder formula, give a whole bunch
of problems which ask you to find £ for given f and z. Such problems completely miss the point
of Lagrange’s formula. The point is that even though you usually can’t compute the mystery
point £ precisely, Lagrange’s formula for the remainder term allows you to estimate it. Here
is the most common way to estimate the remainder:

Theorem 11.5.2 (Estimate of remainder term). If f is an n + 1 times differentiable function
on an interval containing x = 0, and if you have a constant M such that

’f(”“)(t)) < M for all t between 0 and =z, (1)

then
A{kﬂn+1

[Rnf(x)] < ICESIE

Proof. We don’t know what £ is in Lagrange’s formula, but it doesn’t matter, for wherever it
is, it must lie between 0 and z so that our assumption (1) implies [V (€)| < M. Put that in
Lagrange’s formula and you get the stated inequality. O

11.5.1 How to compute ¢ in a few decimal places

Consider f(x) = e*. We computed the Taylor polynomials before. If you set x = 1, then you
get e = f(1) =T, f(1) + Rnf(1), and thus, taking n = 8,
T 1 1 1 1 1 1

1
e=lt+qgtgtatatatatata

1 + Rg(1).

By Lagrange’s formula there is a £ between 0 and 1 such that

O 19— e
9! T

Rs(1) =
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(remember: f(z) = €, so all its derivatives are also e¢”.) We don’t really know where ¢ is, but
since it lies between 0 and 1 we know that 1 < e < e. So the remainder term Rg(1) is positive
and no more than e/9!. Estimating e < 3, we find

1 3
Thus we see that
1 1 1 1 1 1 3
+ + +3'+ +7|+ +a<e< —I— + +3'+ +7|+ +a

or, in decimals,
2.718281... < e < 2.718287...

11.5.2 FError in the approximation sinz ~ x

In many calculations involving sin x for small values of & one makes the simplifying approxima-
tion sinz =~ x, justified by the known limit

sin x

lim =1.

z—0 X

Question: How big is the error in this approximation?
To answer this question, we use Lagrange’s formula for the remainder term again.

Let f(x) =sinz. Then the first degree Taylor polynomial of f is
T f(z) =

The approximation sinx & z is therefore exactly what you get if you approximate f(z) = sinx
by its first degree Taylor polynomial. Lagrange tells us that

flz) =T1f(x)+ Rif(x), ie. sinz=x+ R;f(x),
where, since f”(z) = —sinz,

f”(&)xg _
21 N

1 2
—5siné - x

Rif(z) =

for some & between 0 and z.

As always with Lagrange’s remainder term, we don’t know where £ is precisely, so we have to
estimate the remainder term. The easiest way to do this (but not the best: see below) is to say
that no matter what £ is, sin £ will always be between —1 and 1. Hence the remainder term is
bounded by

(1) Ry f(z)| < 327,

and we find that

xf%:vQ §sinx§x+%x2
Question: How small must we choose = to be sure that the approximation sinz = z isn’t off
by more than 1% ?

If we want the error to be less than 1% of the estimate, then we should require %mQ to be less
than 1% of |z|, i.e.
1% <0.01- |7 & |z] < 0.02
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So we have shown that, if you choose |z| < 0.02, then the error you make in approximating
sinz by just z is no more than 1%.

A final comment about this example: the estimate for the error we got here can be improved
quite a bit in two different ways:

(1) You could notice that one has |[sinz| < z for all x, so if £ is between 0 and z, then
|sin&| < [£] < |x|, which gives you the estimate

IRy f(x)] < %]m|3 instead of %mQ as in (9).

(2) For this particular function the two Taylor polynomials T} f(z) and T f(x) are the same
(because f”(0) =0). So Taf(z) = x, and we can write

sinz = f(x) =z + Raf(x),

In other words, the error in the approximation sinz =~ x is also given by the second order
remainder term, which according to Lagrange is given by

—cos&
3!

| cos€|<1

z’ |Rof(2)] < glal,

Rof(z) =

which is the best estimate for the error in sinx ~ x we have so far.

11.6 The limit as z — 0, keeping n fixed

11.6.1 Little-oh

Lagrange’s formula for the remainder term lets us write a function y = f(x), which is defined
on some interval containing = 0, in the following way

FOO) o, SO0 L O

f(z) = f0) + f(0)z + —; o CESI]

(11.6)

The last term contains the £ from Lagrange’s theorem, which depends on x, and of which you
only know that it lies between 0 and x. For many purposes it is not necessary to know the last
term in this much detail — often it is enough to know that “in some sense” the last term is the
smallest term, in particular, as © — 0 it is much smaller than z, or z2, or, ..., or 2™
Theorem 11.6.1. If the n+ 1st derivative f**1)(z) is continuous at z = 0 then the remainder
term R, f(z) = f"D ()"t /(n 4 1)! satisfies

R (@)

=0
xz—0 xk

forany £k =0,1,2,...,n.
Proof. Since ¢ lies between 0 and z, one has lim, o f*TV (&) = f(**1(0), and therefore

lim Rnfk(%’) — lim f(?’b-i-l)(é')ﬂ — lim f(n+1)(5) e f(n-i—l)(()) .0=0.

r—0 xk z—0

x—0 X
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So we can rephrase (11.6) by saying

(0 () (o
f(x) = f(0) + f(0)z + / 2,( )332 + 4+ ! '( )a:” + remainder
! n!
where the remainder is much smaller than 2", 2"~ !, ..., 2%, z or 1. In order to express the

condition that some function is “much smaller than z™,” at least for very small x, Landau

introduced the following notation which many people find useful.

Definition 11.6.1. “o(z™)” is an abbreviation for any function h(x) which satisfies

lim Mz) =
z—0 ™
So you can rewrite (11.6) as
2 (n)
Fa) = 1)+ 7O+ a2y n|<0)x"+o(:v”).

The nice thing about Landau’s little-oh is that you can compute with it, as long as you obey
the following (at first sight rather strange) rules which will be proved in class

" - o(z™) = o(z" ™)
o(z") - o(z™) = o(z""")
™ = o(z") ifn<m
o(z"™) + o(x™) = o(z™) ifn<m
o(Cz") = o(z") for any constant C'

11.6.2 Example: prove one of these little-oh rules

Let’s do the first one, i.e. let’s show that 2" - o(x™) is o(z"*™) as x — 0.

Remember, if someone writes =" - o(z™), then the o(z™) is an abbreviation for some function
h(z) which satisfies lim,_0 h(z)/2™ = 0. So the z" - o(z™) we are given here really is an
abbreviation for "h(z). We then have

h(z)

. a"h(z) P  m
ili% e ili%m—m =0, since h(z) = o(z™).

11.6.3 Can you see that 2° = o(z?) by looking at the graphs of
these functions?

A picture is of course never a proof, but have a look at figure 11.3 which shows you the graphs
of y =z, 22, 2%, 2%, 2% and z'°. As you see, when x approaches 0, the graphs of higher powers
of = approach the z-axis (much?) faster than do the graphs of lower powers.
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1

Figure 11.3: How the powers stack up. All graphs of y = 2™ (n > 1) are tangent to the z-axis
at the origin. But the larger the exponent n the “flatter” the graph of y = x™ is.

You should also have a look at figure 11.4 which exhibits the graphs of y = 22, as well as
several linear functions y = Cx (with C = 1,%, % and %0) For each of these linear functions
one has 2 < Oz if 2 is small enough; how small is actually small enough depends on C. The
smaller the constant C, the closer you have to keep z to 0 to be sure that =2 is smaller than Cx.
Nevertheless, no matter how small C is, the parabola will eventually always reach the region

below the line y = Cz.

y=a’
y [y=u
y=x/2
//’/::,/ y=1x/3
////:/:, - —y=uz/5
, T - y = 2/20 -

Figure 11.4: 22 is smaller than any multiple of z, if = is small enough. Compare the quadratic
function y = 22 with a linear function y = Cx. Their graphs are a parabola and a straight line.
Parts of the parabola may lie above the line, but as x ~\, 0 the parabola will always duck underneath
the line.

11.6.4 Example: Little-oh arithmetic is a little funny

Both 22 and 22 are functions which are o(z), i.e.

2

2? =o(r) and 2°

= o(z)

Nevertheless 22 # 23. So in working with little-oh we are giving up on the principle that says
that two things which both equal a third object must themselves be equal; in other words, a = b
and b = ¢ implies a = ¢, but not when you’re using little-ohs! You can also put it like this:
just because two quantities both are much smaller than z, they don’t have to be equal. In
particular,
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you can never cancel little-ohs!!!

In other words, the following is pretty wrong

o(z%) — o(z*) = 0.
Why? The two o(z?)’s both refer to functions h(x) which satisfy lim, .o h(x)/z? = 0, but there
are many such functions, and the two o(z2)’s could be abbreviations for different functions h(z).

Contrast this with the following computation, which at first sight looks wrong even though it
is actually right:

o(z?) — o(z?) = o(a?).
In words: if you subtract two quantities both of which are negligible compared to 2?2 for small
x then the result will also be negligible compared to =2 for small x.

11.6.5 Computations with Taylor polynomials

The following theorem is very useful because it lets you compute Taylor polynomials of a function
without differentiating it.

Theorem 11.6.2. If f(z) and g(z) are n + 1 times differentiable functions then

Tnf(z) = Tag(x) < f(x) = g(x) + o(z"). (11.7)

In other words, if two functions have the same nth degree Taylor polynomial, then their differ-
ence is much smaller than ", at least, if z is small.

In principle the definition of T), f(x) lets you compute as many terms of the Taylor polynomial
as you want, but in many (most) examples the computations quickly get out of hand. To see
what can happen go though the following example:

11.6.6 How NOT to compute the Taylor polynomial of degree
12 of f(z) =1/(1+ 2?)

Diligently computing derivatives one by one you find

f@) = so £(0) =1
flx) = (112;)2 so f'(0) =0
f'(x) = (?xj;; so f"(0) = —2
PO =2t w0 FO(0) = 0
FD () = Q4W so fW(0) =24 = 4!
FO () = 240_3”3(7; ioiz)ﬁ_. 327 so fM(0) =0
FO @) = —720—1F 21(‘7i2+_;;5)f4 +72° so f@(0) = 720 = 6!

226



I'm getting tired of differentiating — can you find f(12)(z)? After a lot of work we give up at
the sixth derivative, and all we have found is

1
Tﬁ{w}:1—$2+$4—$6.

By the way,

1— 7822+ 7152% — 1716 2% + 1287 28 — 286 210 + 13 z12
(14 22)13

02 () = 479001600

and 479001600 = 12!.

11.6.7 The right approach to finding the Taylor polynomial of
any degree of f(x) =1/(1+ 2?)

Start with the Geometric Series: if g(t) = 1/(1 —t) then
gty =1+t + 2+ 3+t " o(t).
Now substitute ¢t = —z2 in this limit,
g(—a?) =1—2? +2* — 2%+ + (=1)"2® + o ((—2%)")

Since o ((—2?)") = o(2®") and

we have found )

1+ a2
By Theorem (11.6.2) this implies

=1-a2?+a* -2+ + (=1)"2* + o(x*")

1
Tgn{1+x2}:1—:U2+:E4—x6—|—---+(—1)”x2".

11.6.8 Example of multiplication of Taylor series

Finding the Taylor series of €?%/(1 + x) directly from the definition is another recipe for
headaches. Instead, you should exploit your knowledge of the Taylor series of both factors
e?® and 1/(1 + x):

2242 233 94t

2r 4
et =142z + o1 + a3l + 1 + o(x")
4 2
:1+2x+2x2+§x3+§$4+0(1‘4)
1

=1—x+2%— 23+ 2"+ o(ah).

1+2
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Then multiply these two

1 4 2
o2 . = (1 + 224 22% 4+ —2® + Z2* +o(a:4)> 1=z +2%— 2%+ 2" + o(z*))

I1+x 3 3
=1 - 2z + 22 — 22 + 2t + o(z?
+ 2z — 222 + 22 — 22 + o(z?)
+ 222 — 22 + 22t + o(a?)
+ 323 - %114 + o(z?)
+ z2t + o(z?)

1 1
:1+$+x2+§x3+§x4+0(x4) (x — 0)

11.6.9 Taylor’s formula and Fibonacci numbers

The Fibonacci numbers are defined as follows: the first two are fy = 1 and f; = 1, and the
others are defined by the equation

(Fib) [ fo = a1+ fa2]

So

fo=h+tfo=1+1=2,

fs=f+th=2+1=3,

fai=fs+fo=3+2=5,
etc.

The equation (Fib) lets you compute the whole sequence of numbers, one by one, when you are
given only the first few numbers of the sequence (fp and f; in this case). Such an equation for
the elements of a sequence is called a recursion relation.

Now consider the function

fla) = ——

1l —a2?
Let
Toof(z) = co + c12 + cox® + c32® + - - -
be its Taylor series.
Due to Lagrange’s remainder theorem you have, for any n,

1

R =co+c1r +cor® + ez’ + -+ epa™ +o(z")  (z— 0).

Multiply both sides with 1 — 2 — 22 and you get

l=1-z—2) (o +caz+ 2’4+ - +c, +o@") (z—0)
=c + car + 2 + -+ ™+ o(z")
— ¢z — cz? — - — cpx™ + o(ah)
— coz? — - — cpax™ — oz") (x —0)

=co+(c1—co)z+ (g —c1 —co)z® + (e3 — e — 1)z + - -
4 (en — cpe1 — cp—2)x” +o(z") (z —0)
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Compare the coefficients of powers z* on both sides for k = 0,1,...,n and you find
co=1, c1—cg=0 = c1=cp=1, co—c1—cg=0 = co=c1+cop=2

and in general
Cp—Cr1—Chp2=0 = cp=cp1+Cp2

Therefore the coefficients of the Taylor series T, f(z) are exactly the Fibonacci numbers:
cn=fnforn=0,1,2,3,...

Since it is much easier to compute the Fibonacci numbers one by one than it is to compute the
derivatives of f(x) = 1/(1 — z — z?), this is a better way to compute the Taylor series of f(z)
than just directly from the definition.

11.6.10 More about the Fibonacci numbers

In this example you’ll see a trick that lets you compute the Taylor series of any rational
function. You already know the trick: find the partial fraction decomposition of the given
rational function. Ignoring the case that you have quadratic expressions in the denominator,
this lets you represent your rational function as a sum of terms of the form

A
(x —a)
These are easy to differentiate any number of times, and thus they allow you to write their
Taylor series.

Let’s apply this to the function f(z) = 1/(1 — z — 2?) from the example 11.6.9. First we factor
the denominator.

145

l—z—-22=0 = 224+2-1=0 < z= 5

The number

) ~ 1.61803398874989...

is called the Golden Ratio. It satisfies?

1445
2

1
¢+$—f5.

The roots of our polynomial 22 + 2 — 1 are therefore

_—1—\/5__(25 -1+ 1
1‘7—72 = s ZL‘+—72 —¢

and we can factor 1 — x — 22 as follows

1—x—a;2——(x2+a:—1)——(x—x_)(x—x+)——(x—;)(a:—i—(ﬁ).

1 2 2 1—+5 —1 5
2To prove this, use — = V5 -t f

¢ 1+v5 1+v51— 5 2
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So f(z) can be written as

1 -1 A B

J(@) = l—z—a2 (:c—%)(a:%—gi)) :x—é—i_x—kqﬁ

The Heaviside trick will tell you what A and B are, namely,

P e A S
5+¢ V5 5+¢

Sl

The nth derivative of f(x) is
A(—1)"n! B(—1)"n!

f™(w) = at T
(m—é) +1 (1‘+¢) +1

Setting x = 0 and dividing by n! finally gives you the coefficient of " in the Taylor series of
f(x). The result is the following formula for the nth Fibonacci number

™) 1 A-D)™! 1 B(-1)"n! il 1\"*!

Cn

Using the values for A and B you find

fa=cn= \}g {¢”+1 - ¢n1+1 } (11.8)

11.6.11 Differentiating Taylor polynomials

If
Tnf('r) =ag+a1x + a2x2 + - +a,z"”

is the Taylor polynomial of a function y = f(z), then what is the Taylor polynomial of its
derivative f'(z)?

Theorem 11.6.3. The Taylor polynomial of degree n — 1 of f/(x) is given by
T {f'(x)} = a1 + 2a00 + - + na,z™ .

In other words, “the Taylor polynomial of the derivative is the derivative of the Taylor polyno-
mial.”

Proof. Let g(x) = f'(z). Then ¢g®)(0) = f*++1(0), so that

112 xn—l
1’2 " xn—l
:fm»+ﬂ”mm+f@m»§+~~+ﬂ>m%n_n! (%)

On the other hand, if T}, f(x) = ap + a12 + - - - + ana”™, then a, = f#)(0)/k!, so that

i0(0) =

kay =11
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In other words,
F(0)
2!

1-a1 = f(0), 2a2 = f?(0), 3a3 = , etc.
So, continuing from ($) you find that

T 1 {f' ()} = Tho19(x) = a1 + 2a9x + - - - + napz™ "

as claimed. O

11.6.12 Example
We compute the Taylor polynomial of f(z) = 1/(1 — z)? by noting that

1

f(z) = F'(z), where F(z) = T

Since
T F(@)=1+z+2? +2°+.. 2"

theorem 11.6.3 implies that

1

11.6.13 Example

[Example: Taylor polynomials of arctanx. | Let f(z) = arctanz. Then know that

1

fe) =1z

By substitution of ¢ = —z? in the Taylor polynomial of 1/(1 —t) we had found

1
Ton{f(2)} = T2”{1 +xz} =1—a’ 4ot —af 4 (1)

This Taylor polynomial must be the derivative of Tb,+1f(x), so we have

3 o 22n+1
Tony1{arctanz} =z — T + = 4ot (_1)n2n+ -

11.7 The limit n — oo, keeping x fixed

11.7.1 Sequences and their limits

We shall call a sequence any ordered sequence of numbers aj,as,as,...: for each positive
integer n we have to specify a number a,,.
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11.7.2 Examples of sequences

definition first few number in the sequence
! 1
Qp, n 17273747
bn:() 07070707
1 1111
Cn:E 122237 4>
1\n 11 _1 1
dn = (—3) ~3:9 27 B
B 14ty Lt o1 1,2,21,22 217 943
" 20 3! n! 150207309240 %600
3 2n+1 3 3 5
_ el = - 2 (o _r T
S = Tona{sine} = = r 44+ (=15 =35, ST R TR AR

The last two sequences are derived from the Taylor polynomials of e* (at = 1) and sinx (at
any x). The last example S, really is a sequence of functions, i.e. for every choice of x you get
a different sequence.

Definition 11.7.1. A sequence of numbers (a,)52; converges to a limit L, if for every ¢ > 0
there is a number N, such that for all n > N, one has

la, — L| < e.
One writes

lim a, = L
n—oo

1
11.7.3 Example: lim — =0

n—o00 N,

The sequence ¢, = 1/n converges to 0. To prove this let € > 0 be given. We have to find an N,
such that
len| < € for all n > N..

The ¢, are all positive, so |¢,| = ¢,, and hence

1 1
len] <€ <= —<e <= n> -,
n €

which prompts us to choose N. = 1/e. The calculation we just did shows that if n > % = N,
then |¢,| < e. That means that lim,,_ ¢, = 0.

11.7.4 Example: lim o" =0 if |a| < 1

n—0o0

As in the previous example one can show that lim, .., 27" = 0, and more generally, that for
any constant a with —1 < a < 1 one has

lim a™ = 0.
n—oo
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Indeed,

‘an’ _ ’a‘n _ enln\a| <€

holds if and only if
nlnja| < Ine.

Since |a| < 1 we have In |a| < 0 so that dividing by In |a| reverses the inequality, with result

n Ine
la"| <€ <= n> —
In |al

The choice N, = (In€)/(In|a|) therefore guarantees that |a"| < € whenever n > N.

One can show that the operation of taking limits of sequences obeys the same rules as taking
limits of functions.

Theorem 11.7.1. If
lim a, = A and lim b, = B,
n—oo n—oo
then one has
lim a, +b, = A+t B
n—oo
lim a,b, = AB
n—oo
lim — = —  (assuming B # 0).
The so-called “sandwich theorem” for ordinary limits also applies to limits of sequences. Namely,

one has

Theorem 11.7.2 (“Sandwich theorem”). If a,, is a sequence which satisfies b, < a, < ¢, for
all n, and if lim,, .~ b, = lim,, o ¢, = 0, then lim,,_,, a, = 0.

Finally, one can show this:

Theorem 11.7.3. If f(z) is a function which is continuous at = = A, and a,, is a sequence
which converges to A, then

lim f(a,) = f (nll_>rr01O an) = f(A).

n—oo

11.7.5 Example

Since lim,, o 1/n = 0 and since f(x) = cosz is continuous at x = 0 we have

. 1
lim cos — =cos0 = 1.
n—o00 n

11.7.6 Example

You can compute the limit of any rational function of n by dividing numerator and denominator
by the highest occurring power of n. Here is an example:

o1 2 (L) 9
lim —— = lim N/ —
n—)oon2—|—3n n—>001_|_3% 1—|—302
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11.7.7 Example

. . . . 1 . .
[Application of the Sandwich theorem. | We show that lim, T 0 in two different
ways.

Method 1: Since vn?2 +1 > vn? = n we have

1 1
< ——< —.
n?2+1 n
The sequences “0” and % both go to zero, so the Sandwich theorem implies that 1/v/n? + 1 also
goes to zero.

Method 2: Divide numerator and denominator both by n to get

(L where f(z) = ———
"”‘W‘f@’ here 1) = oy

Since f(x) is continuous at z = 0, and since % — 0 as n — oo, we conclude that a,, converges
to 0.

.o

11.7.8 Example: lim — = 0 for any real number z
n—oo M.

If |z| <1 then this is easy, for we would have |z"| <1 for all n > 0 and thus

n

1 1 1 1

x

< = < =
“nl 123 (n—-1)n " 1.2:2...2.2  2n-1
—_—

n!

n—1 factors n—1 factors

which shows that lim,, % = 0, by the Sandwich Theorem.

For arbitrary x you first choose an integer N > 2z. Then for all n > N one has

n

L R R e R e N
< use |z| <
n! 1-2-3---n 2
N-N-N---N-N /1\"
=" 1.2.3.-n 2

Split fraction into two parts, one containing the first N factors from both numerator and
denominator, the other the remaining factors:

NNN N N N N N N N _N
1 2 3 NN+1 n N N+4+1 N+2 n — NI
—— —— =~
=NN/N! <1 <1 <1
Hence we have
" NN /1\"
Tl (=
n!| — NI <2>

if 2|z < N and n > N.

Here everything is independent of n, except for the last factor (%)" which causes the whole
thing to converge to zero as n — oo.
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11.8 Convergence of Taylor Series

Definition 11.8.1. Let y = f(x) be some function defined on an interval a < x < b containing
0. We say the Taylor series To f(x) converges to f(z) for a given x if

nlggo Tof(z) = f().

The most common notations which express this condition are

o0 ,f[,‘k
fla) =) P05
k

=0
or

x2 x3
@) = 1)+ J' )z + ["0) 55 + FOO) 57 + -+

In both cases convergence justifies the idea that you can add infinitely many terms, as suggested
by both notations.

There is no easy and general criterion which you could apply to a given function f(x) that would
tell you if its Taylor series converges for any particular z (except x = 0 — what does the Taylor
series look like when you set = 07). On the other hand, it turns out that for many functions
the Taylor series does converge to f(x) for all z in some interval —p < z < p. In this section
we will check this for two examples: the “geometric series” and the exponential function.

Before we do the examples I want to make this point about how we’re going to prove that the
Taylor series converges: Instead of taking the limit of the 7), f(x) as n — oo, you are usually
better off looking at the remainder term. Since T), f(x) = f(x) — R, f(z) you have

nh_)rgo T.f(x) = f(zx) <= nh_)rglo R,f(x)=0

So: to check that the Taylor series of f(x) converges to f(z) we must show that the remainder
term R, f(x) goes to zero as n — oo.

11.8.1 Example: The Geometric series converges for —1 <z <1

If f(z) =1/(1 — z) then by the formula for the Geometric Sum you have

1
1 — gntl 4 gntl
N 11—z
n+1
=l+a+ai+- 2"+
11—z
xn+1
:T”f(x)+1—x'

We are not dividing by zero since |z| < 1 so that 1 —x # 0. The remainder term is

R f(x) =
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Since |z| < 1 we have

im0 2| 0

0.

n—00 nwoo |1 — x| |1 —z :|1—l‘|:

Thus we have shown that the series converges for all —1 < x < 1, i.e.

1
= lim {1+z+2>+ - +2"}=1+z+2”+2°+ -

1—=x n—00

11.8.2 Convergence of the exponential Taylor series

Let f(x) = e®. It turns out the Taylor series of e® converges to e” for every value of x. Here’s
why: we had found that

2 n
Tne$:1+x+£+...+£7
2! n!
and by Lagrange’s formula the remainder is given by
mn—&—l
Rpe® = et ——
O P YA

where £ is some number between 0 and z.
If z > 0 then 0 < & < x so that €6 < e*; if < 0 then < ¢ < 0 implies that ¢ < €0 = 1.
Either way one has e¢ < e/, and thus

|l.’n+1

Ryet| < el 12T
[Rne®| < e (n+1)!

We have shown before that lim,, o, 2" /(n + 1)! = 0, so the Sandwich theorem again implies
that lim,,_,~ |Rnpe®| = 0.

Conclusion:

T — lim 41+ +$—2+ NN G +x—2+—3+m—4+
@ = Y S R TR TR

Do Taylor series always converge? And if the series of some function y = f(z) converges, must
it then converge to f(x)? Although the Taylor series of most function we run into converge to
the functions itself, the following example shows that it doesn’t have to be so.

11.8.3 The day that all Chemistry stood still

The rate at which a chemical reaction “A—B” proceeds depends among other things on the tem-
perature at which the reaction is taking place. This dependence is described by the Arrhenius
law which states that the rate at which a reaction takes place is proportional to

F(T) = e i
where AF is the amount of energy involved in each reaction, k is Boltzmann’s constant, and
T is the temperature in degrees Kelvin. If you ignore the constants AF and k (i.e. if you set
them equal to one by choosing the right units) then the reaction rate is proportional to

F(T)=e VT,
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If you have to deal with reactions at low temperatures you might be inclined to replace this
function with its Taylor series at T = 0, or at least the first non-zero term in this series. If
you were to do this you’d be in for a surprise. To see what happens, let’s look at the following

function,
e/ x>0
R

This function goes to zero very quickly as x — 0. In fact one has

—1/x
lim f@) = lim & = lim t"e™ " = 0. (set t =1/x)
N0 T N0 " t—o0

This implies
f(z) = oa") (x—0)

for anyn =1,2,3.... As x — 0, this function vanishes faster than any power of x.
)
N l
Yy = e =
> T

Figure 11.5: An innocent looking function with an unexpected Taylor series. The Taylor series at
x = 0 does not converge to f(0). See example 11.8.3 which shows that even when a Taylor series of
some function f converges you can’t be sure that it converges to f — it could converge to a different
function.

If you try to compute the Taylor series of f you need its derivatives at x = 0 of all orders.
These can be computed (not easily), and the result turns out to be that all derivatives of f
vanish at r =0,

£(0) = 1'(0) = f"(0) = fP(0) = --- =0.
The Taylor series of f is therefore
I‘Q ;p?’
TOOf(fE):0+0'$+0'§+0-§+...:0'

Clearly this series converges (all terms are zero, after all), but instead of converging to the
function f(z) we started with, it converges to the function g(z) = 0.

What does this mean for the chemical reaction rates and Arrhenius’ law? We wanted to “sim-
plify” the Arrhenius law by computing the Taylor series of f(7T) at T' = 0, but we have just
seen that all terms in this series are zero. Therefore replacing the Arrhenius reaction rate by
its Taylor series at T' = 0 has the effect of setting all reaction rates equal to zero.

11.9 Leibniz’ formulas for In2 and = /4

Leibniz showed that



and
1 1 1 ™

1
375 7 0T T
Both formulas arise by setting x = 1 in the Taylor series for

1
1

2 3 4

T T x

1 1 = _— _— —_— e e .
n( —i—:):) x 2+3+4
arcta a:3+:n5+:1:7

T nr—=r—— —_— —_— e e
3 5 7

This is only justified if you show that the series actually converge, which we’ll do here, at least
for the first of these two formulas. The proof of the second is similar. The following is not

Leibniz’ original proof.
You begin with the geometric sum
1 (_1)n+1xn+1
= +
14z 1+

l—a+a? -3+ (=1)"a"

Then you integrate both sides from = 0 to x = 1 and get

1 1 1 1 U da Lantldg
(=1 = _1n+1/
1 2+3 + )n—i—l /01+$+( ) o l+=z
1 n+1d
:1n2+(—1)"+1/ R
o l1+=w
(Use fol rFdr = k—il) Instead of computing the last integral you estimate it by saying
n+1 1 ,.n+1 1
OSx an+12>0§/$ dxﬁ/x”"‘ldx: 1
1+ZL' 0 1+.ZU 0 n+2
Hence —_—
nrd
lim (—1)"“/ Ty,
n—+00 0 1+=x
and we get
1 11 1 , ni1 [T Tldz
TELIEOI_§+§_+<_1) n—|—171n2+nh%nolo(_1) ; 1+
=In2.
Euler proved that
PR S P
6 4 9 n?

11.10 Proof of Lagrange’s formula

For simplicity assume x > 0. Consider the function

FO), ., 00
2 n!

g(t) = f(0) + f'(0)t + t" + K" — f(t),

where .
et SO) + PO 4 -+ L0 ()
- xn+1
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We have chosen this particular K to be sure that

g(x) =0.

Just by computing the derivatives you also find that

while

g(n+1)(t) =(n+ 1K — f(”Jrl)(t). (11.10)

We now apply Rolle’s Theorem n times:

since ¢(t) vanishes at ¢ = 0 and at ¢ = x there exists an z1 with 0 < z; < z such that

g'(z1) =0

since ¢'(t) vanishes at ¢t = 0 and at ¢ = x1 there exists an x9 with 0 < z9 < x1 such that
/

g'(z2) =0

since ¢ (¢

9" (x3)

) vanishes at ¢t = 0 and at t = x9 there exists an z3 with 0 < x3 < x2 such that
0

since g(")(t) vanishes at ¢ = 0 and at t = x,, there exists an x4 with 0 < 2,41 < 2,
such that ¢(™ (2,41) = 0.

We now set & = x,,41, and observe that we have shown that ¢+ (¢£) = 0, so by (11.10) we get

ARl
GRSV
Apply that to (11.9) and you finally get
(n) (n+1)
Fa) = 1)+ PO+ Dy f(n:— &) oo

11.11 Proof of Theorem 11.6.2

Lemma. If h(z) is a k times differentiable function on some interval containing 0, and if for

some integer k < n one has h(0) = h/(0) = --- = h*=1(0) = 0, then
h(z) _ hM(0)
Proof. Just apply I’Hopital’s rule k£ times. You get
i M) < B W)
250 2k 250 kb1 T 250 k(k — D)zh—2

RE=D(g) =0 h¥)(0)
- = lim =
a—0 k(k—1)--- 22! k(k—1)---2-1
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First define the function h(z) = f(z) — g(z). If f(x) and g(x) are n times differentiable, then

so is h(z).

The condition T, f(z) = T,,g(x) means that
£(0) =9(0),  f'(0) =4'(0),

which says, in terms of h(z),

()

i.e.

F(0) = g™ (0),

h(0) = B'(0) = h"(0) = - -- = K™ (0) = 0,

Toh(x) =0.

We now prove the first pat of the theorem: suppose f(z) and g(x) have the same nth degree
Taylor polynomial. Then we have just argued that T),h(x) = 0, and Lemma 11.11 (with k = n)
says that lim,_,o h(z)/2™ = 0, as claimed.

To conclude we show the converse also holds. So suppose that lim,_,o h(x)/z™ = 0. We’ll show
that (1) follows. If (f) were not true then there would be a smallest integer k& < n such that
h(0) = K (0) = h"(0) = - -- = K*D(0) = 0, but A (0) # 0.

This runs into the following contradiction with Lemma 11.11

M0, 1)

k! x—0 i‘k

0 #

Here the limit (*) exists because n > k.

11.12 PROBLEMS

TAYLOR’S FORMULA

687. Find a second order polynomial (i.e. a
quadratic function) Q(x) such that Q(7) =
43,Q'(7) = 19,Q"(7) = 11.

+390

688. Find a second order polynomial p(x)
such that p(2) = 3, p/(2) = 8, and p”(2) =
—1.

+390
689. A Third order polynomial P(z) sat-
isfies P(0) = 1,P'(0) = -3,P"(0)

—8, P”(0) = 24. Find P(x).

690. Let f(z) = Vo +25. Find the poly-
nomial P(x) of degree three such that
P®)(0) = f*)(0) for k =0,1,2,3.

h n
= limﬂ-x—:()-limx"_k:O.
z—0 x" xk z—0
(%)
691. Let f(x) = 1 +2 — 2?2 — 23, Com-

pute and graph Tyf(x), Tif(x), Taf(z),
Tsf(x), and Ty f (z), as well as f(x) itself (so,
for each of these functions find where they
are positive or negative, where they are in-
creasing/decreasing, and find the inflection
points on their graph.)

692. Find T3sinx and T5sin z.

Graph T3sinz and Tssinz as well as y =
sinx in one picture. (As before, find where
these functions are positive or negative,
where they are increasing/decreasing, and
find the inflection points on their graph.
This problem cané&should be done without
a graphing calculator.)
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Compute T§ f(z), T{ f(x) and Ty f(x) for
the following functions.

693. f(x) = 23, a = 0; then for @ = 1 and
a=2.

694. f(a:)z;,azl. Also do a =2

695. f(zr)=+z,a=1

696. f(x)=1Inz, a=1. Also a = €.

697. f(z)=Inyz,a=1

698. f(z) =sin(2x), a =0, also a = 7 /4.
699. f(z)=cos(x), a=r.

700. f(z)=(x—1)%, a=0, and also a = 1.
701. f(x)—iz,a 0

702. Find the nth degree Taylor polynomial
T2 f(z) of the following functions f(x)

n_ a f(z)
2 0 14z —2°
3 0 142 —2°
25 0 1+z—23
25 2 142 —2a3
2 1 142 —23
1 1 x?

2 1 x?

5 1 1/x
5 0 1/(1+ )
3 0 1/(1—3x+22?%)

For which of these combinations (n, a, f(z))
is T¢ f(z) the same as f(x)?

L 3

Compute the Taylor series Tio f(t) for the
following functions (« is a constant). Give a
formula for the coefficient of x™ in Tu f(t).
(Be smart. Remember properties of the log-
arithm, definitions of the hyperbolic func-
tions, partial fraction decomposition.)

703. € 390
704. e 390
705. sin(3t) 1390
706. sinht 1390
707. cosht 1390

1

708. —— 390
142t f
709 5 1391

T2t
710. In(1+1¢) 1391
711. In(2 + 2t) 1391
712. InvV1+t 1391
713. In(1+ 2t) 1391
1+t
714. Iny/—— 391
Vi f
1 . |
715. T [hint:PFD!] 1391
716 o 1391
12
717. sint + cost 1391
718. 2sintcost 1391
719. tant (3 terms only) 1391
2
720. 14t% - §t4 1391
721. (1+1)° 1391
722. V1+t 1391

723. f(x) = 1%, what is £(19(0)? 1391
724. Compute the Taylor series of the follow-
ing two functions
f(x) =sinacosz + cosasinx
and
g(z) = sin(a + )
where a is a constant. 1391
725. Compute the Taylor series of the follow-
ing two functions
h(z) = cosacosz —sinasinz
and
k(x) = cos(a + x)
where a is a constant.

726. The following questions ask you to re-
discover Newton’s Binomial Formula,
which is just the Taylor series for (1 4 x)".
Newton’s formula generalizes the formulas
for (a+b)?, (a +b)?, etc that you get using
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Pascal’s triangle. It allows non integer expo-
nents which are allowed to be either positive
and negative. Reread section 11.3 before do-
ing this problem.

(a) Find the Taylor series of f(z) =
(=1+2)"?)
(b) Find the coefficient of z* in the Taylor

series of f(z) = (14+2)™ (don’t do the arith-
metic!)

1+

(c) Let p be any real number. Compute the

terms of degree 0, 1, 2 and 3 of the Taylor
series of
flx) =1+ )

(d) Compute the Taylor polynomial of de-
gree n of f(x) = (1+ x)P.

(e) Write the result of (d) for the exponents
p = 2,3 and also, for p = —1,—-2,—3 and
finally for p = % The Binomial Theo-
rem states that this series converges when

lz| < 1.

LAGRANGE’S FORMULA FOR THE REMAINDER

727. Find the fourth degree Taylor polyno-
mial Ty{cosz} for the function f(z) = cosx
and estimate the error |cosx — Py(zx)| for
lz| < 1.

1392

728. Find the 4th degree Taylor polynomial

Ti{sinz} for the function f(z)=sinz. Es-
timate the error |sinx — Ty{sin z}| for |z| <
1.

729. (Computing the cube root of 9) The cube

root of 8 = 2x2x 2 is easy, and 9 is only one
more than 8. So you could try to compute
/9 by viewing it as /8 + 1.

(a) Let f(z) = ¥V/8+x. Find T>f(z), and
estimate the error [v/9 — Tof(1)].

(b) Repeat part (i) for “n = 37, i.e. compute
Tsf(z) and estimate |v/9 — T3£(1)].

+392

730. Follow the method of problem 729 to

compute v/ 10:

(a) Use Taylor’s formula with f(z) =

VI9+z, n = 1, to calculate v/10 approx-
imately. Show that the error is less than

1/216.

(b) Repeat with n = 2. Show that the error
is less than 0.0003.

731. Find the eighth degree Taylor polyno-

mial Tg f(z) about the point 0 for the func-
tion f(z) = cosz and estimate the error
|cosx — Tgf(x)| for |z| < 1.

Now find the ninth degree Taylor polyno-
mial, and estimate | cosz — Ty f ()] for |z| <
1.

LITTLE-OH AND MANIPULATING TAYLOR POLYNOMI-

ALS

Are the following statements True or False?
In mathematics this means that you should
either show that the statement always holds
or else give at least one countererample,
thereby showing that the statement is not
always true.

732. (1+2%)? —1=o(z)?

733. (14 22)% — 1 = o(2?)?

734. Vi+z—V1—-z=o0(z)?
735. o(x) + o(x) = o(x)?

736. o(x) — o(z) = o(x)?

737. o(x)-o(x) =o(x) ?

738. o(x?) + o(z) = o(z?)?
739. o(z?) — o(z?) = o(x3)?
740. o(2z) =o(z) ?
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741. of(x) 4 o(z?) = o(x)?
742. o(z) + o(z?) = o(x?)?
743. 1 —cosx = o(x)?

744. Define

B e~ 1/a? x#0
O

This function goes to zero very quickly as
x — 0 but is 0 only at 0. Prove that
f(x) = o(z™) for every n.

745. For which value(s) of k is V1 + 22 =
1+ o(x*) (as z — 0)?
For which value(s) of k is V1 +22 = 1 +
o(z*) (as x — 0)?
For which value(s) of k is 1 — cos % = o(z¥)
(as x —0)7

746. Let g, be the coefficient of ™ in the
Taylor series of the function

1

9(w) = 2 -3z + 22

(a) Compute go and g; directly from the def-
inition of the Taylor series.

(b) Show that the recursion relation g, =
3Gn—1 — 2gn_2 holds for all n > 2.

(c) Compute g2, g3, g4, gs-
(d) Using a partial fraction decomposition

of g(z) find a formula for ¢ (0), and hence
for gy. 1393

747. Answer the same questions as in the pre-
vious problem, for the functions

X
hiw) = 2—-3z+ 22
and 5
—z
k()= — %
(z) 2—3x+22

1303

748. Let h, be the coefficient of 2™ in the
Taylor series of

1+«

hz)=—— "%
(@) = 55 1 oa2

(a) Find a recursion relation for the h,,.
(b) Compute hg, hy, ..., hs.

(c) Derive a formula for h, valid for all n,
by using a partial fraction expansion.

(d) Is hogpg more or less than a million? A
billion?

Find the Taylor series for the following
functions, by substituting, adding, multiply-
ing, applying long division and/or differen-
tiating known series for 1—&—%’ e’, sinx, cosx
and Inx.

749. ¥ 393
750. 't 1393
751. 303
1+¢
752. —— 393
1-t¢ f
753, +393
C1+2t
754. @)
S ifx #£0
fd x
/(@) { 1 ifz=0
1393
In(1
755, U1 *2) £394
x
ot
756. 394
1—-t¢ f
1
757. +394
1-t¢
758 L dati th
. ———— (recommendation: use the an-
V1 — 2
swer to problem 757) 1394
759. arcsint
(use problem 757 again) 1394
760. Compute Tyle "cost] (See example
11.6.8.) +394
761. Tyle "sin 2t 1394
1
762, —— 394
2 —t—t2 f

763. v/ 1+ 2t + 12 1394
764. In(1—t?)
765. sintcost
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LIMITS OF SEQUENCES

Compute the following limits:

766. lim —
n—oo 2n — 3
+394
767, lim " 394
© oo on —3 f
. n?
. 2n 11
769. nh_)rgo T _on 1394
. 2n 11
770. nh_}ngo 1 —an 1394
n
1
771. lim S £394

2

. n
772 o 1395
1000™
773. lim 1395
n—oo n!
I+ 1
774, lim oL +395

1\2

775. Compute lim
n—oo (2n)!

the factors in numerator and denominator.|

776. Let f, be the nth Fibonacci number.
Compute
1' fn
im

n—00 fnfl

[Hint: write out all

+395

CONVERGENCE OF TAYLOR SERIES

777. Prove that the Taylor series for f(x) =
cos x converges to f(x) for all real numbers
x (by showing that the remainder term goes
to zero as n — ©0). 1395

778. Prove that the Taylor series for g(x) =
sin(2z) converges to g(z) for all real num-
bers . 1395

779. Prove that the Taylor series for h(x) =
cosh(z) converges to h(x) for all real num-
bers z .

780. Prove that the Taylor series for k(x) =
e?*+3 converges to k(z) for all real numbers
x .

781. Prove that the Taylor series for {(z) =
cos(z—Z) converges to £(z) for all real num-
bers z.

782. If the Taylor series of a function y = f(x)
converges for all x, does it have to converge

to f(x), or could it converge to some other
function? 1395

783. For which real numbers x does the Tay-
lor series of f(x) =
1395

t ?
T converge to f(x)

784. For which real numbers x does the Tay-

lor series of f(x) = converge to f(x)?

1 — 22
(hint: a substitution may help.) 1395

785. For which real numbers x does the Tay-

converge to f(z)?

1
lor series of f(x) = T2
T

1395

786. For which real numbers = does the Tay-

lor series of f(z) = converge to f(x)?

1395

3+ 2z

787. For which real numbers x does the Tay-
lor series of f(z) = 5= converge to f(z)?
1395

788. For which real numbers z does the Tay-

lor series of f(x) = converge to

2—x— a2
f(z)? (hint: use PFD and the Geometric

Series to find the remainder term.)

789. Show that the Taylor series for f(z) =
In(1 + x) converges when —1 < x < 1 by
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integrating the Geometric Series

E— IS S S
1+¢ * *

tn+1
n+1
14+t

+ (=1 (—1)

fromt =0 tot=x. (See §11.9.)

790. Show that the Taylor series for f(x) =
e’ converges for all real numbers z. (Set
t = —22 in the Taylor series with remainder

for e'.)

791. Show that the Taylor series for f(x) =
sin(z*) converges for all real numbers .
(Set t = x* in the Taylor series with remain-
der for sint.)

792. Show that the Taylor series for f(z) =
1/(1 + 2?) converges whenever —1 < x < 1
(Use the GEOMETRIC SERIES.)

793. For which x does the Taylor series of
f(x) = 2/(1 + 422) converge? (Again, use

the GEOMETRIC SERIES.)

794. The error function from statistics is de-
fined by

1 z 7t2/2
erf(z) =— [ e dt
T Jo
(a) Find the Taylor series of the error func-
tion from the Taylor series of f(r) = e” (set

r = —t2/2 and integrate).

(b) Estimate the error term and show that
the Taylor series of the error function con-
verges for all real x.

795. Prove Leibniz’ formula for — by mim-

icking the proof in section 11.9. Specifically,
find a formula for the remainder in :

1
el — 24 (=)™ + Ron(t)

and integrate this from ¢t =0 to t = 1.

APPROXIMATING INTEGRALS

796. (a) Compute Thr{sint} and give an upper
bound for Ry{sint} for 0 <t < 0.5
(b% Use part (a) to approximate
/ ? sin(z?) dz, and give an upper bound
foor the error in your approximation.
+395

797. (a) Find the second degree Taylor poly-

nomial for the function ef.

(b) Use it to give an estimate for the integral

1 2
/ e’ dx
0

(c) Suppose instead we used the 5th degree
Taylor polynomial p(t) for e’ to give an es-
timate for the integral:

1 2
/ e’ dx
0

Give an upper bound for the error:

1 1
/ e d —/ p(z?) dz
0 0

Note: You need not find p(t) or the integral
12
Jo p(a?) dz.
+396

0.1
798. Approximate / arctan x dxr and es-
0

timate the error in your approximation by
analyzing T»f(t) and Ry f(t) where f(t) =
arctant.

0.1
799. Approximate / 22" dr and esti-
0

mate the error in your approximation by
analyzing T3 f(t) and R3f(t) where f(t) =
te .

0.5
800. Estimate / v/1 + z*dz with an error
0
of less than 10~%.

0.1

801. Estimate arctan x dz with an error

0
of less than 0.001.
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Chapter 12

Complex Numbers

12.1 Complex numbers

The equation 22 + 1 = 0 has no solutions, because for any real number z the square z? is
nonnegative, and so 22 4+ 1 can never be less than 1. In spite of this it turns out to be very

useful to assume that there is a number ¢ for which one has
i2=—1. (12.1)

Any complex number is then an expression of the form a+ bi, where a and b are old-fashioned
real numbers. The number a is called the real part of a + bi, and b is called its tmaginary
part.

Traditionally the letters z and w are used to stand for complex numbers.

Since any complex number is specified by two real numbers one can visualize them by plotting
a point with coordinates (a,b) in the plane for a complex number a + bi. The plane in which
one plot these complex numbers is called the Complex plane, or Argand plane.

a=7Jm(z)

b
a

a = Re(z)

. 0 = argz = arctan

Figure 12.1: A complex number with cartesian representation (a, b) in black and polar representation
(r,0) in blue.

You can add, multiply and divide complex numbers. Here’s how:
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To add (subtract) z =a+ bi and w = ¢+ di

z4+w=(a+bi)+ (c+di) = (a+c)+ (b+d)i,
z—w=(a+bi)—(c+di)=(a—c)+ (b—d)i.

To multiply z and w proceed as follows:

2w = (a + bi)(c+ di)
= a(c+ di) + bi(c + di)
= ac + adi + bei + bdi?
= (ac — bd) + (ad + be)i

where we have use the defining property i2 = —1 to get rid of i2.

To divide two complex numbers one always uses the following trick.

a+bi_a+bi c—di
c+di c+di c—di
(a4 bi)(c — di)

(e +di)(c— di)

Now
(c+di)(c—di)=c? — (di)? = —d*i* = 2 + d?,

SO

a+bi (ac+bd) + (bc — ad)i

c+di 2+ d?
ac+bd bc—ad .

+ {2

A+d> A+d?

Obviously you do not want to memorize this formula: instead you remember the trick, i.e. to
divide ¢ + di into a + bi you multiply numerator and denominator with ¢ — ds.

For any complex number w = ¢ + di the number ¢ — di is called its complex conjugate.
Notation:
w=c+di, w=c—di.

A frequently used property of the complex conjugate is the following formula
wiw = (¢ + di)(c — di) = ¢ — (di)? = & + d°. (12.2)

The following notation is used for the real and imaginary parts of a complex number z. If
z = a+ bi then

a = the Real Part of z = Re(z), b = the Imaginary Part of z = Jm(z).

Note that both PRez and Jmz are real numbers. A common mistake is to say that Jmz = bi.
The “” should not be there.
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12.2 Argument and Absolute Value

For any given complex number z = a + bi one defines the absolute value or modulus to be

|z] = Va2 + b2,

s0 |z| is the distance from the origin to the point z in the complex plane (see figure 12.1).

The angle 0 is called the argument of the complex number z. Notation:
argz = 6.

The argument is defined in an ambiguous way: it is only defined up to a multiple of 27. E.g.
the argument of —1 could be 7, or —7, or 3w, or, etc. In general one says arg(—1) = 7w + 2k,
where k may be any integer.

From trigonometry one sees that for any complex number z = a + bi one has

a = |z|cosf, and b = |z|sin b,

so that
|z| = |2] cos @ + i|z|sin 6 = |z|(cos 6 + isin6).
and
sin 6 b
tanf = = —
cos a

12.2.1 Example: Find argument and absolute value of z =2 +1

Solution:  |z| = V22 +1%2 = /5. z lies in the first quadrant so its argument 6 is an angle

between 0 and 7/2. From tanf = % we then conclude arg(2 + i) = 0 = arctan 5

12.3 Geometry of Arithmetic

Since we can picture complex numbers as points in the complex plane, we can also try to
visualize the arithmetic operations “addition” and “multiplication.”

Figure 12.2: Addition of z=a+ bi and w =c+ di
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To add z and w one forms the parallelogram with the origin, z and w as vertices. The fourth
vertex then is z + w. See figure 12.2.

1z=—-b+ as

z=a-+bi

Figure 12.3: Multiplication of a + bi by i.

To understand multiplication we first look at multiplication with i. If z = a + bi then
iz = i(a+ bi) = ia + bi* = ai — b= —b+ ai.

Thus, to form ¢z from the complex number z one rotates z counterclockwise by 90 degrees. See
figure 12.3.

If a is any real number, then multiplication of w = ¢+ di by a gives
aw = ac + adt,

so aw points in the same direction, but is a times as far away from the origin. If @ < 0 then aw
points in the opposite direction. See figure 12.4.

N

3z

L 2

-3z

Figure 12.4: Multiplication of a real and a complex number

Next, to multiply z = a + bi and w = ¢ + di we write the product as

zw = (a + bi)w = aw + biw.
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Zw = aw + biw

biw

Figure 12.5: Multiplication of two complex numbers

Figure 12.5 shows a + bi on the right. On the left, the complex number w was first drawn, then
aw was drawn. Subsequently iw and biw were constructed, and finally zw = aw + biw was
drawn by adding aw and biw.

One sees from figure 12.5 that since iw is perpendicular to w, the line segment from 0 to biw is
perpendicular to the segment from 0 to aw. Therefore the larger shaded triangle on the left is
a right triangle. The length of the adjacent side is a|w|, and the length of the opposite side is
blw|. The ratio of these two lengths is a : b, which is the same as for the shaded right triangle
on the right, so we conclude that these two triangles are similar.

The triangle on the left is |w| times as large as the triangle on the right. The two angles marked
0 are equal.

Since |zw]| is the length of the hypothenuse of the shaded triangle on the left, it is |w| times the
hypothenuse of the triangle on the right, i.e. [zw| = |w| - |z|.

The argument of zw is the angle 6 + ; since § = arg z and ¢ = argw we get the following two
formulas

|zw] = |2] - |w] (12.3)
arg(zw) = arg z + arg w, (12.4)

in other words,

when you multiply complex numbers, their lengths get multiplied
and their arguments get added.

12.4 Applications in Trigonometry

12.4.1 Unit length complex numbers

For any 6 the number z = cosf + isinf has length 1: it lies on the unit circle. Its argument
is arg z = 0. Conversely, any complex number on the unit circle is of the form cos ¢ + i sin ¢,
where ¢ is its argument.
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12.4.2 The Addition Formulas for Sine & Cosine

For any two angles # and ¢ one can multiply z = cosf + isinf and w = cos¢ + isin¢. The
product zw is a complex number of absolute value |zw| = |z| - |w| = 1 -1, and with argument
arg(zw) = arg z+argw = 0+¢. So zw lies on the unit circle and must be cos(0+¢)+isin(6+¢).
Thus we have

(cosf 4 isinf)(cos ¢ + isinp) = cos(d + ¢) + isin(6 + ¢). (12.5)
By multiplying out the Left Hand Side we get

(cos @ +isinf)(cos ¢ + isin¢) = cosf cos ¢ — sin @ sin ¢ (12.6)
+ i(sin 0 cos ¢ + cos Osin ).

Compare the Right Hand Sides of (12.5) and (12.6), and you get the addition formulas for Sine
and Cosine:

cos(0 + ¢) = cos b cos ¢ — sin O sin ¢
sin(f + ¢) = sin 6 cos ¢ + cos 0 sin ¢

12.4.3 De Moivre’s formula

For any complex number z the argument of its square 22 is arg(z?) = arg(z-2) = arg z +arg z =

2arg z. The argument of its cube is arg z® = arg(z - 2?) = arg(z) + arg2? = argz + 2argz =
3arg z. Continuing like this one finds that

argz" =n argz (12.7)

for any integer n.

Applying this to z = cosf + isinf you find that 2" is a number with absolute value |2"| =

|z|" = 1" = 1, and argument narg z = nf. Hence 2" = cosnf + isinnf. So we have found
(cos@ +isinf)" = cosnb + isinnf. (12.8)

This is de Moivre’s formula.

For instance, for n = 2 this tells us that
cos 260 4 isin 20 = (cos @ + isinf)? = cos® § — sin® O + 2i cos O sin 6.

Comparing real and imaginary parts on left and right hand sides this gives you the double angle
formulas cos 20 = cos? f — sin? # and sin 20 = 2sin 6 cos .

For n = 3 you get, using the Binomial Theorem, or Pascal’s triangle,
(cos +isin ) = cos® @ + 3i cos® Osin 0 + 3i% cos O sin? O + i sin® 0
= cos®# — 3cosfsin? @ + i(3 cos? fsin f — sin® 0)
so that
cos 30 = cos® ) — 3 cos fsin? 0

and
sin 30 = cos? fsin @ — sin® 0.

In this way it is fairly easy to write down similar formulas for sin 46, sin 50, etc.. ..
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12.5 Calculus of complex valued functions

A complex valued function on some interval I = (a,b) C R is a function f : I — C. Such a
function can be written as in terms of its real and imaginary parts,

f(z) = u(z) + iv(z), (12.9)

in which u,v : I — R are two real valued functions.

One defines limits of complex valued functions in terms of limits of their real and imaginary
parts. Thus we say that

lim f(z)=1L

T—IQ

if f(z) =u(x)+iv(x), L = A+ iB, and both

lim u(z) = A and lim v(z) =B

T—T0 T—TQ

hold. From this definition one can prove that the usual limit theorems also apply to complex
valued functions.

Theorem 12.5.1. If lim,_,,, f(z) = L and lim,_,,, g(x) = M, then one has
lim f(z) £g(x) =L+ M,

Tr—T0

L
xh—g:lo ggxi = provided M # 0.

The derivative of a complex valued function f(z) = u(z) + iv(z) is defined by simply differ-
entiating its real and imaginary parts:

f(z) = (z) + i/ (). (12.10)
Again, one finds that the sum,product and quotient rules also hold for complex valued functions.

Theorem 12.5.2. If f, g : I — C are complex valued functions which are differentiable at some
xo € I, then the functions f + g, fg and f/g are differentiable (assuming g(xg) # 0 in the case
of the quotient.) One has

(f £9) (x0) = f'(x0) + ¢'(x0)

(f9)'(z0) = f'(20)g(w0) + f(z0)g' (xo)
<f>’ (2g) = £ @0)9(w0) = [(w0)g/ (o)
g) 9(x0)?

Note that the chain rule does not appear in this list! See problem 832 for more about the chain
rule.
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12.6 The Complex Exponential Function

We finally give a definition of e**%. First we consider the case a = 0:

Definition 12.6.1. For any real number ¢ we set e = cost + isint.. See Figure 12.6.

e = cosf + isinb

—_
¥

Figure 12.6: Euler's definition of e?

12.6.1 Example

€™ = cosm +isinm = —1. This leads to Euler’s famous formula
e +1=0,

which combines the five most basic quantities in mathematics: e, m, 4, 1, and 0.

For a brilliant lecture on this identity consider watching You D) by Mathologer

Reasons why the definition 12.6.1 seems a good definition.
Reason 1. We haven’t defined e* before and we can do anything we like.

Reason 2. Substitute it in the Taylor series for e”:

i, @) (@) (i)!
e =1+1t+ o1 + 3 + m

2 B P
:1+zt—§—2§+a+za—~-

=122 414 — ...
+i(t—t2/3 +17/5 — )

= cost +isint.

This is not a proof, because before we had only proved the convergence of the Taylor series
for e* if x was a real number, and here we have pretended that the series is also good if you
substitute x = it.

Reason 3. As a function of ¢ the definition 12.6.1 gives us the correct derivative. Namely,
using the chain rule (i.e. pretending it still applies for complex functions) we would get

d;: = je'.



https://www.youtube.com/watch?v=-dhHrg-KbJ0

Indeed, this is correct. To see this proceed from our definition 12.6.1:

de't _ dcost +isint

dt dt
__dcost  .dsint
“Ta Ta
= —sint +icost

= i(cost +isint)

Reason 4. The formula e® - e¥ = ¢*1¥ still holds. Rather, we have e+ = ¢S, To check

this replace the exponentials by their definition:

ee’ = (cost + isint)(cos s + isins) = cos(t 4 s) 4 isin(t + s) = !+9),

Requiring e® - e = ¢*¥ to be true for all complex numbers helps us decide what e*+% shoud
be for arbitrary complex numbers a + bi.

Definition 12.6.2. For any complex number a + bi we set

e¥TV — e . ¢ — e4(cosbh + isinb).

One verifies as above in “reason 3” that this gives us the right behaviour under differentiation.
Thus, for any complex number r = a + bi the function

y(t) = " = e™(cos bt + i sin bt)

satisfies

12.7 Complex solutions of polynomial equations

12.7.1 Quadratic equations
The well-known quadratic formula tells you that the equation
az® +br+c=0 (12.11)

has two solutions, given by

_ —b+VD

o D = b% — 4ac. (12.12)

T+

If the coefficients a, b, ¢ are real numbers and if the discriminant D is positive, then this
formula does indeed give two real solutions x; and z_. However, if D < 0, then there are no
real solutions, but there are two complex solutions, namely

-b =D
= — 41
2a 2a

T+
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12.7.2 Example: solve 2?2 + 22 +5=0

Solution: Use the quadratic formula, or complete the square:

2?20 +5=0
— 2?42 +1=-4
= (z+1)*=-4
= zr+1==x2%
—zr=-1%2.

So, if you allow complex solutions then every quadratic equation has two solutions, unless the
two solutions coincide (the case D = 0, in which there is only one solution.)

12.7.3 Complex roots of a number

For any given complex number w there is a method of finding all complex solutions of the
equation
2" =w (12.13)

ifn=2,3,4,--- is a given integer.
To find these solutions you write w in polar form, i.e. you find 7 > 0 and 6 such that w = re®.
Then

5 = rl/neze/n

is a solution to (12.13). But it isn’t the only solution, because the angle # for which w = re®

isn’t unique — it is only determined up to a multiple of 2. Thus if we have found one angle 0
for which w = 7?, then we can also write

w=re0F2km) =0, +1,42, .-

The n'? roots of w are then
i(L+2kn)

n

1/n

zr=1r""e

Here k can be any integer, so it looks as if there are infinitely many solutions. However, if you
increase k by n, then the exponent above increases by 27i, and hence z; does not change. In a
formula:

Zn = 205, An+l =21, RAnt2 =22, .-  Zkin — 2k
So if you take k =0,1,2,--- ,n — 1 then you have had all the solutions.

The solutions z always form a regular polygon with n sides.
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Figure 12.7: The sixth roots of 1. There are six of them, and they re arranged in a regular
hexagon.

12.7.4 Example: find all sixth roots of w =1
We are to solve 20 = 1. First write 1 in polar form,
1=1-e%=1.¢?m, (k=0,+1,%2,...).
Then we take the 6*" root and find
2 = 11/6e2kmi/6 — ohmi/3 (k=0,41,42,...).
The six roots are
20 =1 a=eP=3+45V3 == 1113
_ i/ _ NG =T =113

ol

_1_
2

[NGIEN

z3 = —1 24

12.8 Other handy things you can do with complex
numbers

12.8.1 Partial fractions

Consider the partial fraction decomposition

22 +3x—4 A Bx+C

@—2)a2+4) z-2 " 2214

The coefficient A is easy to find: multiply with z — 2 and set = 2 (or rather, take the limit
x — 2) to get
_2243-2-4
2244
Before we had no similar way of finding B and C' quickly, but now we can apply the same trick:
multiply with 22 + 4,

22 +3x—4 A
——— =B C ZyH—
=) r+C+ (7 + )1_2,
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and substitute = 2i. This make z? + 4 = 0, with result

(20)2 +3-2i — 4
(2 —2)

=2B+C.

Simplify the complex number on the left:

(20)243-2i—4  —4+4+6i—4
(20 —2) 242
_ —8+46i
2420
(=8 + 6i)(—2 — 2i)
(-2)7 +27
_28+4i

8
+

12.8.2 Certain trigonometric and exponential integrals

You can compute
I= / €3 cos 2zdz

by integrating by parts twice. You can also use that cos 2z is the real part of €%®. Instead of
computing the real integral I, we look at the following related complex integral

J = / 3T dy
which we get from I by replacing cos 2z with €2, Since €% = cos 2z + i sin 2z we have
J = /6336 (cos 2z + isin2x)dx = /6336 cos2zdx + 14 / 37 sin 2zdz

ie.,
J = I + something imaginary.
The point of all this is that J is easier to compute than I:

3z _2ix 3a+2i (342i e(Bt2i)e
J= [ e3re2irdy = [ e3ot2izqy — [ BH20)rq, — +C
3+ 2

where we have used that

1
/e”dx = e+ C
a

holds even if a is complex is a complex number such as a = 3 + 2.
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To find I you have to compute the real part of J, which you do as follows:

eBH2)T . cos 20 4 isin 2z

342 3+ 2i
_ 3,(cos 2z +isin 2x)(3 — 2i)
(34 2i)(3 — 21)
63x3c082x+25in2x+i(- )
13

SO
/e?’z cos 2xdx = 3* (% cos 2z + % sin 21:) + C.

12.8.3 Complex amplitudes

A harmonic oscillation is given by
y(t) = Acos(wt — 9),

where A is the amplitude, w is the frequency, and ¢ is the phase of the oscillation. If
you add two harmonic oscillations with the same frequency w, then you get another harmonic
oscillation with frequency w. You can prove this using the addition formulas for cosines, but
there’s another way using complex exponentials. It goes like this.

Let y(t) = Acos(wt — ¢) and z(t) = B cos(wt — 6) be the two harmonic oscillations we wish to
add. They are the real parts of

Y (t) = A{cos(wt — @) + isin(wt — p)} = Aet71® = Aot

Z(t) = B {cos(wt — 0) + isin(wt — )} = Be¥!10 = Be=¥eiwt
Therefore y(t) + z(t) is the real part of Y (¢) + Z(t), i.e.

y(t) + 2(t) = Re(Y (t)) + Re(Z(t)) = Re(Y (¢) + Z(1)).

The quantity Y (t) + Z(t) is easy to compute:

Y(t) + Z(t) = Ae et  Be Wit — (Ae_w + Be_w) et
If you now do the complex addition

Ae ™ 4+ Be ™ = Ce™ W,

i.e. you add the numbers on the right, and compute the absolute value C' and argument —¢ of
the sum, then we see that Y (t) 4+ Z(t) = Ce!“=%). Since we were looking for the real part of
Y(t)+ Z(t), we get

y(t) + 2(t) = Acos(wt — ¢) + B cos(wt — 0) = C cos(wt — ).
The complex numbers Ae™*®, Be™® and Ce™™ are called the complex amplitudes for the
harmonic oscillations y(t), z(¢) and y(t) + z(t).

The recipe for adding harmonic oscillations can therefore be summarized as follows: Add the
complex amplitudes.

12.9 PROBLEMS

COMPUTING AND DRAWING COMPLEX NUMBERS
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802. Compute the following complex numbers
by hand.

Draw all numbers in the complex (or “Ar-
gand”) plane (use graph paper or quad pa-
per if necessary).

Compute absolute value and argument of all
numbers involved.

i2; 414
(1+ 22)(2 —1);
(T4+4)(1 4 29)(1 + 3i);
(?f+ V2)% (3 + 5V3)3;
7.? 5/(2

+1

803. Simplify your answer.

e For 2 =24 37 find:

22

|

w0 e
x

ISEI=

e For z = 2¢% find:

1. arg(z)
2. |7|
3. 22
4. 1
e For z = —we?’ find:
1. |2
2. arg(z)

+396

804. Plot the following four points in the com-

plex plane. Be sure and label them.

P= \Fe4 Q=1+2i

_ _ 1

396

805. [Deriving the addition formula for

tan(f+¢)] Let 0, ¢ € (—5, 5) be two angles.

(a) What are the arguments of

z=141itan6 and w = 1 + i tan ¢?

(Draw both z and w.)
(b) Compute zw.
(c) What is the argument of zw?
(d) Compute tan(arg zw).
+396

806. Find formulas for cos46, sin46, cos 560

and sin 66 in terms of cos @ and sin 6, by us-
ing de Moivre’s formula. 1396

807. In the following picture draw 2w, %w,

iw, —2iw, (2 + 4w and (2 — 1)w. (Try to
make a nice drawing, use a ruler.)

N

0 2

Make a new copy of the picture, and draw
w, —w and —w.

Make yet another copy of the drawing.
Draw 1/w, 1/w, and —1/w. For this draw-
ing you need to know where the unit circle
is in your drawing: Draw a circle centered
at the origin with radius of your choice, and
let this be the unit circle. [Depending on
which circle you draw you will get a differ-
ent answerl]

808. Verify directly from the definition of ad-

dition and multiplication of complex num-
bers that

(a) z+w=w+z
(b) zw = wz
(c) z(v+w) =2v+ zw

holds for all complex numbers v, w, and z.

809. True or False? (In mathematics this

means that you should either give a proof
that the statement is always true, or else



give a counterexample, thereby showing
that the statement is not always true.)

For any complex numbers z and w one has

(1) Re(iz) = iTIm(z)
(j) Im(iz) = Re(z
(k) Re(z) = Re(2)

~— —
~—

I

+396

810. The imaginary part of a complex num-
ber is known to be twice its real part. The
absolute value of this number is 4. Which
number is this? 1397

811. The real part of a complex number is
known to be half the absolute value of that
number. The imaginary part of the number
is 1. Which number is it? 1397

THE COMPLEX EXPONENTIAL

812. Compute and draw the following num-
bers in the complex plane
eTi/3. mi[2. | 23T/, (1Tmi/4
e™ 4 1; etn2,
1 o™ p2-mi/2
emi/4) omi/A’  omif4
200973 (20097/2

—8e™i/3 1 12¢™ + 3¢~

813. Compute the absolute value and argu-
ment of e(n2)1+7) 1397
814. Suppose z can be any complex number.

(a) Is it true that e® is always a positive
number?

(b) Is it true that e* # 07 1397
815. Verify directly from the definition that

1
—it
(& "= E
holds for all real values of t. 1397
816. Show that
it | =it it —it
cost:i, gint— o ¢

2 2

817. Show that

coshx = cosix, sinhx = —siniz.
i

818. The general solution of a second order
linear differential equation contains expres-
sions of the form Ae?* + Be~#*. These can
be rewritten as Cq cos St + Cy sin S3t.

If Ae'Pt + Be~ "Bt = 2cos Bt 4 3sin t, then
what are A and B? 1397

819. (a) Show that you can write a “cosine-
wave” with amplitude A and phase ¢ as fol-
lows

Acos(t — ¢) = Re (zeit) ,

where the “complex amplitude” is given by
z = Ae”™. (See §12.8.3).

(b) Show that a “sine-wave” with amplitude
A and phase ¢ as follows
Asin(t — ¢) = Re (zeit) ,

where the “complex amplitude” is given by
z = —iAe™ .

820. Find A and ¢ where Acos(t — ¢) =
2 cos(t) + 2 cos(t — Zm).

821. Find A and ¢ where Acos(t — ¢) =
12 cos(t — &) + 12sin(t — 3m).

822. Find A and ¢ where Acos(t — ¢) =
12 cos(t — m/6) + 12 cos(t — 7/3).

823. Find A and ¢ such that Acos(t — ¢) =
COos (t — %7?) + /3 cos (t — %71’)
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REAL AND COMPLEX SOLUTIONS OF ALGEBRAIC EQUA-

TIONS

824. Find and draw all real and complex
solutions of

(a) 22 4+62+10=0
(b) 23 +8=0

(c) 22 —125=0
(d) 222 +42+4=0

+308

CALCULUS OF COMPLEX VALUED FUNCTIONS

825. Compute the derivatives of the following
functions

1
J(@) = T+1
g(x) =logx + iarctanx
h(z) = e’

Try to simplify your answers.

1398
826. (a) Compute

/ (cos 22)* du

by using cos 6 = 3(e? +e~%) and expanding
the fourth power.

(b) Assuming a € R, compute

/ e 2 (sin aav)2 dz.

(same trick: write sinaz in terms of com-
plex exponentials; make sure your final an-
swer has no complex numbers.)

+308

827. Use cosa = (€' + e7'¥) /2, etc. to eval-
uate these indefinite integrals:

(a) /coszxdq:
(b) /cos4acdaf,
(c) /cosgxsinsvdx,

(d) / sin® z du,

(e) / cos® zsin? z dz,

(f) / sin® z dz

() / sin(32) cos(5z) dx
() / sin?(22) cos(3z) de
(0 /0 ™ in(3e) cos(x) da
G) /0 " 032 co () d
() /0 " 0 (2) cos?(z) d

w/3
. 2
1) /0 sin(z) cos”(z) dz
£400

828. Compute the following integrals when
m # n are distinct integers.

2m

(a) /0 sin(mz) cos(nx) dz
2m

(b) /0 sin(nx) cos(nz) dzx
2m

(c) /0 cos(mzx) cos(nz) dzx

(d) /07r cos(mz) cos(nx) dz

2m
(e) /0 sin(maz) sin(nx) dz

261



() /7r sin(mz) sin(nz) dz 831. Show that for any integers k,l,m
0

These integrals are basic to the theory of T . .
. . . . ] sin kz sinlx sinmadx =0
Fourier series, which occurs in many appli- 0

cations, especially in the study of wave mo-

tion (light, sound, economic cycles, clocks, if and only if & + [+ m is even.

oceans, etc.). They say that different fre- 832. (i) Prove the following version of the
quency waves are “independent”. CHAIN RULE: If f : I — C is a differentiable
829. Show that cosz + sinx = C cos(x + 3) complex valued function, and g : J — [
for suitable constants C' and 3 and use this is a differentiable real valued function, then
to evaluate the following integrals. h = fog: J — Cis a differentiable function,
da and one has
( )/cosx+sinx

. dz h(z) = f'(9(x))g (x).
( /(cosx+sinx)2

da (if) Let n > 0 be a nonnegative integer.
(c) / Prove that if f : I — C is a differentiable
function, then g(z) = f(z)" is also differen-
tiable, and one has

g'(z) = nf(z)" " f'().

Acosz + Bsinx
where A and B are any constants.

830. Compute the integrals

w/2
/ sin? kx sin? iz dz,
0 Note that the chain rule from part (a) does
where k and [ are positive integers. not apply! Why?

COMPLEX ROOTS OF REAL POLYNOMIALS

833. For a and b complex numbers show that

834. For p(x) = ag + a1x + asx® + - - - a,z™ a polynomial and z a complex number, show that

p(z)=do+a1 Z+az (2)°+---ap )"

835. For p a real polynomial, i.e., the coefficients aj, of p are real numbers, if z is a complex root
of p, i.e., p(z) = 0, show Z is also a root of p. Hence the complex roots of p occur in conjugate
pairs.

836. Using the quadratic formula show directly that the roots of a real quadratic are either both
real or a complex conjugate pair.

837. Show that 2 + 3¢ and its conjugate 2 — 3i are the roots of a real polynomial.

838. Show that for every complex number a there is a real quadratic whose roots are a and a.

839. The Fundamental theorem of Algebra states that every complex polynomial of degree n can
be completely factored as a constant multiple of

(x—a1)(x—a2) (. — ay)
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(The «; may not be distinct.) It was proved by Gauss. Proofs of it are given in courses on
Complex Analysis.

Use the Fundamental Theorem of Algebra to show that every real polynomial can be factored
into a product real polynomials, each of degree 1 or 2.
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Chapter 13

Differential Equations

13.1 What is a Differential Equation?

A differential equation is an equation involving an unknown function and its derivatives.
The order of the differential equation is the order of the highest derivative which appears. A
linear differential equation is one of form

Yy +ar(@)y" Y ot ana @)y + an(@)y = k(2)

where the coefficients a; (), ..., a,(z) and the right hand side k(z) are given functions of = and
y is the unknown function. Here

dk
k) - &Y

dzk
denotes the kth derivative of y so this equation has order n. We shall mainly study the case
n = 1 where the equation has form

Y

y' + a(z)y = k()
and the case n = 2 with constant coefficients where the equation has form
y"' +ay +by = k().

When the right hand side k(z) is zero the equation is called homogeneous linear and other-
wise it is called inhomogeneous linear (or nonhomogeneous linear by some people). For
a homogeneous linear equation the sum of two solutions is a solution and a constant multi-
ple of a solution is a solution. This property of linear equations is called the principle of
superposition.

13.2 First Order Separable Equations
A separable differential equation is a diffeq of the form

d
y(2) = F0)Gly(@), or 72 =F@)G(y). (13.1)
To solve this equation divide by G(y(z)) to get

1 dy _

Go@ds = F@: (13.2)
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Next find a function H(y) whose derivative with respect to y is

1 dy
H(y) = — <Solution: H(y) = > 13.3
() e (v) G (13.3)
Then the chain rule implies that (13.2) can be written as
dH (y(x))
——= = F(x).
iz ()

In words: H(y(x)) is an antiderivative of F'(x), which means we can find H (y(x)) by integrating
F(x):

H(y(z)) = / F(z)dz + C. (13.4)

Once you’ve found the integral of F'(z) this gives you y(x) in implicit form: the equation (13.4)
gives you y(x) as an implicit function of x. To get y(x) itself you must solve the equation (13.4)

for y(x).

A quick way of organizing the calculation goes like this:

d
To solve d—y = F(x)G(y) you first separate the variables,
x

dy
G(y)

dy _ z)dr
G(y)—/F()d.

The result is an implicit equation for the solution y with one undetermined inte-
gration constant.

= F(z)dx,

and then integrate,

Determining the constant. The solution you get from the above procedure contains an
arbitrary constant C. If the value of the solution is specified at some given zg, i.e. if y(xg) is
known then you can express C' in terms of y(z) by using (13.4).

A snag: You have to divide by G(y) which is problematic when G(y) = 0. This has as
consequence that in addition to the solutions you found with the above procedure, there are
at least a few more solutions: the zeroes of G(y) (see Example 13.2.2 below). In addition to
the zeroes of G(y) there sometimes can be more solutions, as we will see in Example 13.4.2 on
“Leaky Bucket Dating.”

13.2.1 Example

We solve q
£ = (1 + 2%)cost.

dz
/M—/Costdt,

arctan z = sint + C.

Separate variables and integrate

to get

Finally solve for z and you find the general solution

z(t) = tan(sin(t) + C).
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13.2.2 Example: The snag in action

If you apply the method to ¢/(z) = Ky with K a constant, you get y(z) = eX*+¢) No matter
how you choose C' you never get the function y(x) = 0, even though y(z) = 0 satisfies the
equation. This is because here G(y) = Ky, and G(y) vanishes for y = 0.

13.3 First Order Linear Equations

There are two systematic methods which solve a first order linear inhomogeneous equation

& b a(e)y = k() ()

You can multiply the equation with an “integrating factor”, or you do a substitution y(z) =
c(x)yo(x), where yo is a solution of the homogeneous equation (that’s the equation you get by
setting k(z) = 0).

13.3.1 The Integrating Factor

Let
Az) = /a(a:) dz, m(z) = eA®),

Multiply the equation () by the “integrating factor” m(z) to get

d
m(x)d—i + a(x)m(z)y = m(z)k(zx).
By the chain rule the integrating factor satisfies
dm(z)
dx

Therefore one has

d”s(;”)y _ m(x)% + a(@)m(z)y = m(z) {jg + a(m)y} — m(z)k(z).

Integrating and then dividing by the integrating factor gives the solution

(/ m()k(z) dz + c> .

:eA

1
v= m(x)

In this derivation we have to divide by m(x), but since m(z) (@) and since exponentials
never vanish we know that m(z) # 0, no matter which problem we’re doing, so it’s OK, we can
always divide by m(x).

13.3.2 Variation of constants for 1st order equations

Here is the second method of solving the inhomogeneous equation (f). Recall again that the
homogeneous equation associated with (1) is

dy

Pt ale)y =0, (1
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The general solution of this equation is
y(z) = Ce™ @),

where the coefficient C' is an arbitrary constant. To solve the inhomogeneous equation (1) we
replace the constant C' by an unknown function C(z), i.e. we look for a solution in the form

y = C(x)yo(z) where yo(z) def —A(2)

(This is how the method gets its name: we are allowing the constant C' to vary.)
Then yj(x) + a(x)yo(x) = 0 (because yo(z) solves (f)) and

Y () + a(@)y(z) = C'(@)yo(x) + C2)yo(x) + a(z)C(2)yo(x) = C'(2)yo(x)

so y(z) = C(x)yo(x) is a solution if C'(x)yo(z) = k(zx), i.e.

yo(x)
1
Once you notice that yo(z) = T, you realize that the resulting solution
m(x
k(x)
y(x) = C(x)yo(x) =y :z:/ dz
() = C(x)yo(x) = yo(z) 7o)

is the same solution we found before, using the integrating factor.

Either method implies the following:

Theorem 13.3.1. The initial value problem

d
ﬁ +a(z)y =0, y(0) = vo,

has exactly one solution. It is given by
A _ ("
Y = yoe , where A(x) = a(t) dt.
0

The theorem says three things: (1) there is a solution, (2) there is a formula for the solution, (3)
there aren’t any other solutions (if you insist on the initial value y(0) = yo.) The last assertion
is just as important as the other two, so I'll spend a whole section trying to explain why.

13.4 Dynamical Systems and Determinism

A differential equation which describes how something (e.g. the position of a particle) evolves
in time is called a dynamical system. In this situation the independent variable is time, so it
is customary to call it ¢ rather than z; the dependent variable, which depends on time is often
denoted by z. In other words, one has a differential equation for a function z = x(¢). The
simplest examples have form

dz
e f(z,t). (13.5)
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In applications such a differential equation expresses a law according to which the quantity
x(t) evolves with time (synonyms: “evolutionary law”, “dynamical law”, “evolution equation
for x7).

A good law is deterministic, which means that any solution of (13.5) is completely determined
by its value at one particular time tg: if you know x at time ¢t = ¢y, then the “evolution law”
(13.5) should predict the values of z(t) at all other times, both in the past (¢ < #9) and in the
future (t > to).

Our experience with solving differential equations so far (§13.2 and §13.3) tells us that the
general solution to a differential equation like (13.5) contains an unknown integration constant
C. Let’s call the general solution x(¢;C) to emphasize the presence of this constant. If the
value of x at some time ¢y is known to be, say, g, then you get an equation

x(to; C) = X0 (13.6)

which you can try to solve for C. If this equation always has exactly one solution C' then the
evolutionary law (13.5) is deterministic (the value of z(ty) always determines z(t) at all other
times t); if for some prescribed value x at some time ¢ the equation (13.6) has several solutions,
then the evolutionary law (13.5) is not deterministic (because knowing x(t) at time t¢ still does
not determine the whole solution x(t) at times other than ¢y).

13.4.1 Example: Carbon Dating.

Suppose we have a fossil, and we want to know how old it is.

All living things contain carbon, which naturally occurs in two isotopes, C14 (unstable) and Cig
(stable). A long as the living thing is alive it eats & breaths, and its ratio of Cy2 to Cy4 is kept
constant. Once the thing dies the isotope Cy4 decays into Cis at a steady rate.

Let z(t) be the ratio of C14 to Ci2 at time ¢t. The laws of radioactive decay says that there is a

constant k > 0 such that
dz(t)

dt
Solve this differential equation (it is both separable and first order linear: you choose your
method) to find the general solution

= —kx(t).

z(t;C) = Ce ™.

After some lab work it is found that the current Ci4/Cji2 ratio of our fossil is zpow. Thus we
have
J— _kt]’]OW JR— tnOW
Tnow = Ce — C = xpowe ™.

Therefore our fossil’s C14/Ci2 ratio at any other time ¢ is/was

:B(t) _ xnowekz(tnow—t).

This allows you to compute the time at which the fossil died. At this time the C14/C;5 ratio
must have been the common value in all living things, which can be measured, let’s call it zy;f.
So at the time tqemise When our fossil became a fossil you would have had z(tqemise) = Ziife-
Hence the age of the fossil would be given by

L Ziife
tnow — tdemise = E In —

k(t —t i
Llife = x(tdemise) = Tnow€ (fow —tdemise) -
Tnow

268



13.4.2 Example: On Dating a Leaky Bucket.

A bucket is filled with water. There’s a hole in the bottom of the bucket so the water streams
out at a certain rate.

area=A
h(t) the height of water in the bucket -
A area of cross section of bucket ” h®
a area of hole in the bucket l -

v velocity with which water goes through the hole.

The amount of water in the bucket is A x h(t);
The rate at which water is leaving the bucket is a x v(t);

Hence
dAh(t)

dt

In fluid mechanics it is shown that the velocity of the water as it passes through the hole only
depends on the height h(t) of the water, and that, for some constant K,

= —av(t).

The last two equations together give a differential equation for h(t), namely,

dnh(t)  a
3 =4 Kh(t).

To make things a bit easier we assume that the constants are such that 4+ K = 2. Then h(t)
satisfies

B (t) = —2+/h(t). (13.7)
This equation is separable, and when you solve it you get

S
owh

This formula can’t be valid for all values of ¢, for if you take ¢ > C, the RHS becomes negative
and can’t be equal to the square root in the LHS. But when ¢t < C we do get a solution,

1 = Vh(t)=—t+C.

h(t;C) = (C —t)%

This solution describes a bucket which is losing water until at time C' it is empty. Motivated by
the physical interpretation of our solution it is natural to assume that the bucket stays empty
when ¢t > (', so that the solution with integration constant C' is given by

—t)? wh <
h(t) = (C—1t)* whent<C
0 for t > C.
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Ah(t)

NN

-3 2 -1 1 2 3

\

Figure 13.1: Several solutions h(t; C') of the Leaking Bucket Equation (13.7). Note how they all
have the same values when ¢t > 1.

We now come to the question: is the Leaky Bucket Equation deterministic? The answer is: NO.
If you let C' be any negative number, then h(t; C') describes the water level of a bucket which
long ago had water, but emptied out at time C' < 0. In particular, for all these solutions of the
diffeq (13.7) you have h(0) = 0, and knowing the value of h(t) at ¢ = 0 in this case therefore
doesn’t tell you what h(t) is at other times.

Once you put it in terms of the physical interpretation it is actually quite obvious why this
system can’t be deterministic: it’s because you can’t answer the question “If you know that
the bucket once had water and that it is empty now, then how much water did it hold one hour
ago?”

13.5 Higher order equations

After looking at first order differential equations we now turn to higher order equations.

13.5.1 Example: Spring with a weight.

A body of mass m is suspended by a spring. There are two forces on the :
body: gravity and the tension in the spring. Let F' be the sum of these two |
forces. Newton’s law says that the motion of the weight satisfies F' = ma Y@
where a is the acceleration. The force of gravity is mg where g=32ft /sec?; :
the quantity mg is called the weight of the body. \‘Z

E

gravity

We assume Hooke’s law which says that the tension in the spring is proportional to the amount
by which the spring is stretched; the constant or proportionality is called the spring constant.
We write k for this spring constant.

The total force acting on the body is therefore

F =mg — ky(t).
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According to Newton’s first/second/third law the acceleration a of the body satisfies F' =
ma. Since the acceleration a is the second derivative of position y we get the following differential

equation for y(t)
d?y
Moy = mg - ky(t). (13.8)

13.5.2 Example: the pendulum.

WF string

F =mg
gravity

The velocity of the weight on the pendulum is L‘é—f, hence its acceleration is a = Ld?6/dt>.
There are two forces acting on the weight: gravity (strength mg; direction vertically down) and
the tension in the string (strength: whatever it takes to keep the weight on the circle of radius
L and center P; direction parallel to the string). Together they leave a force of size Fgrayity -sin
which accelerates the weight. By Newton’s “F' = ma” law you get

d?¢

mL@ = —mgsin6(t),
or, canceling ms,
d26 g .
@ + 7 sin 6(t) =0. (13.9)

13.6 Constant Coefficient Linear Homogeneous Equa-
tions

13.6.1 Differential operators

In this section we study the homogeneous linear differential equation
y ™ +ay" ) 4 a1y Fany =0 (13.10)

where the coefficients aq, ..., a, are constants.
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13.6.2 Examples.

The three equations

dy

—L _y=0

df]j y )
y'—y=0, ' +y=0

y™M—y=0

are homogeneous linear differential equations with constant coefficients. Their degrees are 1, 2,
2, and 4.

It will be handy to have an abbreviation for the Left Hand Side in (13.10), so we agree to write
Lly] for the result of substituting a function y in the LHS of (13.10). In other words, for any
given function y = y(x) we set

def

L)) = y" (@) + ary"™ V(@) + -+ a1y (@) + any(@).

We call £ an operator. An operator is like a function in that you give it an input, it does a
computation and gives you an output. The difference is that ordinary functions take a number
as their input, while the operator £ takes a function y(z) as its input, and gives another function
(the LHS of (13.10)) as its output. Since the computation of L[y| involves taking derivatives of
1y, the operator £ is called a differential operator.

13.6.3 Example

The differential equations in the previous example correspond to the differential operators

Lilyl =y — v,
Lolyl =y" —y, Lalyl =9y " +y
Lalyl = y™) —y.
So one has )
d® sin 2
L3[sin 2z] = % + sin 2z = —4sin 2z + sin 22 = —3sin 2x.
x

13.6.4 The superposition principle
The following theorem is the most important property of linear differential equations.

Theorem 13.6.1 (Superposition Principle). For any two functions y; and yo we have

Lly1 + yo] = Lly1] + Llya].

For any function y and any constant ¢ we have

Lley] = cLlyl-
The proof, which is rather straightforward once you know what to do, will be given in lecture.
It follows from this theorem that if 41, ..., yi are given functions, and ¢y, ..., ¢ are constants,
then

Llewyr + -+ ayr]) = alllyl] + - + eyl
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The importance of the superposition principle is that it allows you to take old solutions to
the homogeneous equation and make new ones. Namely, if yi, ..., yr are solutions to the
homogeneous equation L[y] = 0, then so is c1y1 + - - - + cxyx for any choice of constants ¢y, ...,
Ck.

13.6.5 Example

Consider the equation
y" — 4y = 0.

Emily’s sister Kate says that the two functions 31 (z) = €** and ya(2) = e~2* both are solutions
to this equations. You can check that Kate is right just by substituting her solutions in the
equation.
The Superposition Principle now implies that

y(x) = c1e®® + coe "

also is a solution, for any choice of constants ¢y, co.

13.6.6 The characteristic polynomial

This example contains in it the general method for solving linear constant coefficient ODEs.
Suppose we want to solve the equation (13.10), i.e.

L[] % 4™ 4 aiy®™ D a1y + any = 0.

Then the first thing to do is to see if there are any exponential functions y = €™ which satisfy
the equation. Since

de™ dZerz d3er=
W - re®, Tz r2em®, s r3e™,  etc. ...
we see that
L™ = (r"+air™ ' 4 anar + an)e’™. (13.11)

The polynomial
P(r)=r"+ar" ' 4+ an1r + apn.

is called the characteristic polynomsial.
We see that y = €™ is a solution of L[y] = 0 if and only if P(r) = 0.

13.6.7 Example
We look for all exponential solutions of the equation
y" — 4y = 0.
Substitution of y = €"* gives
Y — Ay =12 — 4e™ = (1”2 — 4) e,

The exponential €’? can’t vanish, so y” — 4y = 0 will hold exactly when r? — 4 = 0, i.e. when
r = +2. Therefore the only exponential functions which satisfy y" — 4y = 0 are y;(x) = €** and

yo(x) = e 22,
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Theorem 13.6.2. Suppose the polynomial P(r) has n distinct roots r1,7g,...,7r,. Then the
general solution of L[y] =0 is

y = Clerlx +026r2x RS Cnerna:
where c¢1, ca, ..., c, are arbitrary constants.

Proof. We have just seen that the functions yi(x) = €%, ya(z) = €%, y3(x) = ™%, etc. are
solutions of the equation £[y] = 0. In Math 320 (or 319, or...) you prove that these are all
the solutions (it also follows from the method of variation of parameters that there aren’t any
other solutions).

O]

13.6.8 Complex roots and repeated roots

If the characteristic polynomial has n distinct real roots then Theorem 13.6.2 tells you what
the general solution to the equation L£[y] = 0 is. In general a polynomial equation like P(r) =0
can have repeated roots, and it can have complex roots.

13.6.9 Example

Solve v + 2y +y = 0.
The characteristic polynomial is P(r) = 72 + 2r + 1 = (r + 1)2, so the only root of the char-

acteristic equation 72 +2r +1 = 0 is » = —1 (it’s a repeated root). This means that for this

equation we only get one exponential solution, namely y(z) = e~ 7.

It turns out that for this equation there is another solution which is not exponential. It is
y2(x) = xe~*. You can check that it really satisfies the equation y” + 2y’ +y = 0.

When there are repeated roots there are other solutions: if P(r) = 0, then t/e" is a solution if
j is a nonnegative integer less than the multiplicity of r. Also, if any of the roots are complex,
the phrase general solution should be understood to mean general complex solution and the
coefficients c¢; should be complex. If the equation is real, the real and imaginary part of a
complex solution are again solutions. We only describe the case n = 2 in detail.

Theorem 13.6.3. Consider the differential equation

d?y dy
@+a1@+a2y:0 (1)

and suppose that r; and 7o are the solutions of the characteristic equation of % + a7 + as = 0.
Then

(i) If r; and 7o are distinct and real, the general solution of () is

y=cre" + coe™”.

(ii) If ry = ro, the general solution of () is

y=c1e* + coxe™”.
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(iii) If 11 = a+ Bi and ro = a — Bi, the general solution of (f) is
y = c1e*" cos(fx) + e sin(fx).
In each case ¢; and ¢ are arbitrary constants.

Case (i) and case (iii) can be subsumed into a single case using complex notation:

atfi)r

e = e** cos Bz £ 1e“* sin Bz,

(a+Bi)z (a—Bi)x (a+Bi)x _ (a—pi)x
e —;6 : eaxsinﬂxze 2.6 '
2

e** cos fx =

13.7 Inhomogeneous Linear Equations

In this section we study the inhomogeneous linear differential equation

v +ary" T ot anay + any = k()

where the coefficients ay, ..., a, are constants and the function k(x) is a given function. In the
operator notation this equation may be written
Lly] = k(z).

The following theorem says that once we know one particular solution y, of the inhomogeneous
equation L[y] = k(x) we can find all the solutions y to the inhomogeneous equation L[y] = k(x)
by finding all the solutions yp, to the homogeneous equation L£[y] = 0.

Theorem 13.7.1 (Another Superposition Principle). Assume L[y,] = k(x). Then L[y] = k(x)
if and only if y = y, + vy, where L]y;] = 0.

Proof. Suppose L[y,] = k(x) and y = yp, + yp. Then
LIyl = Llyp + yn] = Llyp] + Llyn] = k(x) + Lyn].
Hence Ly] = k(x) if and only if L[y,] = 0. O

13.8 Variation of Constants

There is a method to find the general solution of a linear inhomogeneous equation of arbitrary
order, provided you already know the solutions to the homogeneous equation. We won’t explain
this method here, but merely show you the answer you get in the case of second order equations.

If y1 () and ya2(z) are solutions to the homogeneous equation
y"(x) + a(2)y'(z) + b(z)y(z) = 0
for which ot
W(z) = yi(x)ys(e) — yi (2)y2(z) # 0,
then the general solution of the inhomogeneous equation

y' (@) + a(2)y'(z) + b(@)y(x) = f(2)

y(r) = —yl(w)/%duw(m)/%dg.

For more details you should take a more advanced course like MATH 319 or 320.

is given by
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13.8.1 Undetermined Coefficients

The easiest way to find a particular solution y, to the inhomogeneous equation is the method
of undetermined coefficients or “educated guessing.” Unlike the method of “variation of con-
stants” which was (hardly) explained in the previous section, this method does not work for all
equations. But it does give you the answer for a few equations which show up often enough to
make it worth knowing the method.

The basis of the “method” is this: it turns out that many of the second order equations with
you run into have the form

y' +ay +by = f(t),
where a and b are constants, and where the righthand side f(¢) comes from a fairly short list
of functions. For all f(¢) in this list you memorize (yuck!) a particular solution y,. With the
particular solution in hand you can then find the general solution by adding it to the general
solution of the homogeneous equation.

Here is the list:

f(t) = polynomial in ¢ In this case you try y,(t) = some other polynomial in ¢ with the same
degree as f(t).

Ezxceptions: if r = 0 is a root of the characteristic equation, then you must try a
polynomial y,(t) of degree one higher than f(t);

if = 0 is a double root then the degree of y,(¢) must be two more than the degree of

f(t).

Ft) = e try yy(t) = Aect
FEzxceptions: if r = a is a root of the characteristic equation, then you must try y,(t) =

Ate;
if r = a is a double root then try y,(t) = At?e®.

f(t) =sinbt or f(t) = cosbt In both cases, try y,(t) = Acosbt + Bsinbt.

Exceptions: if r = bi is a root of the characteristic equation, then you should try
yp(t) = t(Acosbt + Bsinbt).

f(t) =esinbt or f(t) =e¥cosbt Try y,(t) = e*(Acosbt + Bsinbt).

Ezceptions: if r = a + bi is a root of the characteristic equation, then you should try
yp(t) = te®(Acosbt + Bsinbt).

13.8.2 Example
Find the general solution to the following equations
y' +ay —y=2e" (13.12)
' =2y +y=V1+22 (13.13)

The first equation does not have constant coefficients so the method doesn’t apply. Sorry, but
we can’t solve this equation in this course.!

'Who says you can’t solve this equation? For equation (13.12) you can find a solution by computing
its Taylor series! For more details you should again take a more advanced course (like MATH 319), or,
in this case, give it a try yourself.
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The second equation does have constant coefficients, so we can solve the homogeneous equation
(y" —2y'+y = 0), but the righthand side does not appear in our list. Again, the method doesn’t
work.

13.8.3 A more upbeat example.

To find a particular solution of
y//_y/+y:3t2

we note that (1) the equation is linear with constant coefficients, and (2) the right hand side
is a polynomial, so it’s in our list of “right hand sides for which we know what to guess.” We
try a polynomial of the same degree as the right hand side, namely 2. We don’t know which
polynomial, so we leave its coefficients undetermined (whence the name of the method.) L.e. we
try

yp(t) = A+ Bt + Ct*.

To see if this is a solution, we compute
y,(t) = B + 2Ct, Y, (t) = 2C,

so that
yy — Yy +yp = (A— B+2C) + (B —2C)t + Ct*.

Thus gy — v, + yp = 3t* if and only if
A-B+2C=0, B-2C=0, C=3.
Solving these equations leads to C =3, B =2C =6 and A = B — 2C = 0. We conclude that
yp(t) = 6t + 3t

is a particular solution.

13.8.4 Another example, which is rather long, but that’s be-
cause it is meant to cover several cases

Find the general solution to the equation
v+ 3y +2y=t+ 3 — el 4+ 2e72 — e tsin 2t.
Solution: First we find the characteristic equation,
P2 4+3r+2=(r+2)(r+1)=0.

The characteristic roots are r; = —1, and ro = —2. The general solution to the homogeneous
equation is
yn(t) = Cre " 4 Coe ™2t

We now look for a particular solutions. Initially it doesn’t look very good as the righthand side
does not appear in our list. However, the righthand side is a sum of five terms, each of which
is in our list.
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Abbreviate L[y] = y” + 3y’ 4+ 2y. Then we will find functions yi, ..., ys for which one has
L) =t+12, Ly = —e', Llys] =2e, Llys] = —e 'sin2t.

Then, by the Superposition Principle (Theorem 13.6.1) you get that y, def Y1+ y2 +ys+ ya
satisfies
Llyp] = Lly1] + Lya] + Lys] + Llya] =t + 13 — €' +2e72 — e 'sin 2t.

So yp (once we find it) is a particular solution.

Now let’s find y1, ..., y4.

y1(t) the righthand side ¢ + 3 is a polynomial, and r = 0 is not a root of the characteristic
equation, so we try a polynomial of the same degree. Try

y1(t) = A+ Bt + Ct? + Dt3.

Here A, B,C, D are the undetermined coefficients that give the method its name. You
compute

Llyi] = yi +3y1 + 201
= (20 + 6Dt) + 3(B + 20t + 3Dt?) + 2(A + Bt + Ct* 4+ Dt%)
= (20 + 3B +2A4) + (2B + 6C + 6D)t + (2C + 9D)t* + 2D¢t>.

So to get L[y1] =t + > we must impose the equations
2D=1, 2C+9D=0, 2B+4+6C+6D=1, 2C+6B+2A=0.

You can solve these equations one-by-one, with result

D=3 C=-9 B=-%A=%
and thus
() =8 — 2t — 302+ 4%,
yo(t) We want yao(t) to satisfy L[y2] = —el. Since e! = €% with a = 1, and a = 1 is not a

characteristic root, we simply try y2(t) = Aet. A quick calculation gives

Llys] = Ae' + 3Ac + 2A4e" = 6A€".

To achieve L[yo] = —e' we therefore need 64 = —1, i.e. A= —%. Thus
ya(t) = —%et.
y3(t) We want y3(t) to satisfy L[ys] = —e 2!, Since e ? = e with @ = —2, and a = —2

is a characteristic root, we can’t simply try y3(t) = Ae 2. Instead you have to try
y3(t) = Ate~2!. Another calculation gives

Llys] = (4t — 4)14672"/ +3(—2t + 2)A€72t + 2Ate 2 (factor out Ae*Qt)
= [(4+3(~2) + 2)t + (-4 + 3)] Ade™*
—Ae 2,

Note that all the terms with te~2* cancel: this is no accident, but a consequence of the
fact that a = —2 is a characteristic root.

To get Lys] = 2¢~2 we see we have to choose A = —2. We find
y3(t) = —2te 2t
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y4(t) Finally, we need a function y4(t) for which one has L[ys] = —e~!sin2t. The list tells us
to try
ya(t) = e "(Acos2t + Bsin2t).

(Since —1 + 27 is not a root of the characteristic equation we are not in one of the
exceptional cases.)

Diligent computation yields

ya(t) = Ae tcos2t + Be lsin2t
yy(t) = (—A+2B)e tcos2t + (—B—2A)e tsin2t
yi(t) = (—=3A—4B)e'cos2t + (—3B+4A)e 'sin2t

so that
Llys) = (—4A +2B)e ' cos2t + (—2A — 4B)e 'sin 2t.

We want this to equal —e~!sin 2t, so we have to find A, B with
—4A+4+2B =0, —2A-—4B=-—1.

The first equation implies B = 2A, the second then gives —104 = —1, so A = 1—10 and
B = %. We have found

ya(t) = s5e " cos 2t + Ze " sin 2t

After all these calculations we get the following impressive particular solution of our differential
equation,

yp(t) = 8 — 23¢ — 92+ 313 — sl — ote 2 + Lecos2t + Ze fsin2t

and the even more impressive general solution to the equation,

y(t) = yn(y) + yp(t)
= Cleft + 026721‘/
87 23, 942 | 1,3
F 8T 2y 924 1y
— %et — 2te™ % + %e_t cos 2t + %e_t sin 2¢.
You shouldn’t be put off by the fact that the result is a pretty long formula, and that the
computations took up two pages. The approach is to (i) break up the right hand side into terms
which are in the list at the beginning of this section, (ii) to compute the particular solutions
for each of those terms and (iii) to use the Superposition Principle (Theorem 13.6.1) to add

the pieces together, resulting in a particular solution for the whole right hand side you started
with.

13.9 Applications of Second Order Linear Equations

13.9.1 Spring with a weight

In example 13.5.1 we showed that the height y(¢) a mass m suspended from a spring with
constant k satisfies

my” (t) + ky(t) = mg, or y"(t)+ %y(t) =g. (13.14)



This is a Linear Inhomogeneous Equation whose homogeneous equation, y” + %y =0 has
yn(t) = Cy coswt + Co sinwt

as general solution, where w = y/k/m. The right hand side is a constant, which is a polynomial
of degree zero, so the method of “educated guessing” applies, and we can find a particular
solution by trying a constant y, = A as particular solution. You find that y;’ + %yp = %A,
which will equal g if A = Z9. Hence the general solution to the “spring with weight equation”
is
m
y(t) = ?g + Cy coswt + Cy sin wt.
To solve the initial value problem y(0) = yo and y'(0) = vy we solve for the constants C; and
C5 and get
mg Yo

y(t) = 7 + = sin(wt) + (yo — =) cos(wt).

which you could rewrite as

y(t) = % + Y cos(wt — )

for certain numbers Y, ¢.

The weight in this model just oscillates up and down forever: this motion is called a simple
harmonic oscillation, and the equation (13.14) is called the equation of the Harmonic
Oscillator.

13.9.2 The pendulum equation

In example 13.5.2 we saw that the angle 6(¢) subtended by a swinging pendulum satisfies the

pendulum equation,

a0 g .

Ko + 7 sin 6(t) =0. (13.9)
This equation is not linear and cannot be solved by the methods you have learned in this course.
However, if the oscillations of the pendulum are small, i.e. if 8 is small, then we can approximate
sin @ by 6. Remember that the error in this approximation is the remainder term in the Taylor

expansion of sinf at § = 0. According to Lagrange this is

- 03 -
sind = 6 + Ry(0), Ry(0) = cos@ 3 with 0] < 6.

When 6 is small, e.g. if || < 10° ~ 0.175 radians then compared to 6 the error is at most

‘Rg(e)’ - (0.175)2 ~ 0.005

0 3!
in other words, the error is no more than half a percent.

So for small angles we will assume that sin € ~ 6 and hence 6(t) almost satisfies the equation
0 I =0 (13.15)
de2 L - ’

In contrast to the pendulum equation (13.9), this equation is linear, and we could solve it right

now.

The procedure of replacing inconvenient quantities like sin # by more manageable ones (like )
in order to end up with linear equations is called linearization. Note that the solutions to the
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linearized equation (13.15), which we will derive in a moment, are not solutions of the Pendulum
Equation (13.9). However, if the solutions we find have small angles (have |f| small), then the
Pendulum Equation and its linearized form (13.15) are almost the same, and “you would think
that their solutions should also be almost the same.” I put that in quotation marks, because
(1) it’s not a very precise statement and (2) if it were more precise, you would have to prove it,
which is not easy, and not a topic for this course (or even MATH 319 — take MATH 419 or 519
for more details.)

Let’s solve the linearized equation (13.15). Setting § = €™ you find the characteristic equation

2, 9

Ea—
r—{—L

which has two complex roots, r4 = +i \/% . Therefore, the general solution to (13.15) is

0(t) = Acos(\/gt) + Bsin(\/gt),

and you would expect the general solution of the Pendulum Equation (13.9) to be almost the
same. So you see that a pendulum will oscillate, and that the period of its oscillation is given
by

T =2my]—.
g
Once again: because we have used a linearization, you should expect this statement to be valid
only for small oscillations. When you study the Pendulum Equation instead of its linearization
(13.15), you discover that the period T' of oscillation actually depends on the amplitude of the
oscillation: the bigger the swings, the longer they take.

13.9.3 The effect of friction

A real weight suspended from a real spring will of course not oscillate forever. Various kinds
of friction will slow it down and bring it to a stop. As an example let’s assume that air drag
is noticeable, so, as the weight moves the surrounding air will exert a force on the weight (To
make this more likely, assume the weight is actually moving in some viscous liquid like salad
oil.) This drag is stronger as the weight moves faster.
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A simple model is to assume that the friction force is proportional to the velocity of the weight,
Firiction = —hy/(1).
This adds an extra term to the oscillator equation (13.14), and gives
my" (t) = Farav + Firiction = —ky(t) + mg — hy'(t)

ie.

my" (t) + hy'(t) + ky(t) = mg. (13.16)
This is a second order linear homogeneous differential equation with constant coefficients. A
particular solution is easy to find, y, = mg/k works again.

To solve the homogeneous equation you try y = e"?, which leads to the characteristic equation
mr? +hr + k=0,

whose roots are
= Vh? —4mk

2m

T+

If friction is large, i.e. if h > v/4km, then the two roots rL are real, and all solutions are of

exponential type,

y(t) = % + et Ce

Both roots 74+ are negative, so all solutions satisfy

lim y(t) = 0.

t—o00

If friction is weak, more precisely, if A < v/4mk then the two roots r1 are complex numbers,

) . vVAakm — h?
ry = —— +iw, withw=-—1—.
2m 2m

The general solution in this case is

y(t) = % + 6_%75 (A coswt + Bsinwt).

These solutions also tend to zero as t — oo, but they oscillate infinitely often.

13.9.4 Electric circuits

Many equations in physics and engineering have the form (13.16). For example in the electric
circuit in the diagram a time varying voltage V;,(t) is applied to a resistor R, an inductance L
and a capacitor C. This causes a current I(t) to flow through the circuit. How much is this
current, and how much is, say, the voltage across the resistor?
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Electrical engineers will tell you that the total voltage Vj,(t) must equal the sum of the voltages
Vr(t), VL(t) and Vo (t) across the three components. These voltages are related to the current
I(t) which flows through the three components as follows:

Va(t) = RI(t)
dVo(t) 1

a ot

Vi(t) = Ldfg).

Surprisingly, these little electrical components know calculus! (Here R, C' and L are constants
depending on the particular components in the circuit. They are measured in “Ohm,” “Farad,”
and “Henry.”)

Starting from the equation
Vin(t) = Vr(t) + Vi (t) + Vo (1)

you get

Vin(t) = Va(t) + VL (t) + VE(2)
=RI'(t)+ LI"(t) + %I(t)

In other words, for a given input voltage the current I(¢) satisfies a second order inhomogeneous

linear differential equation

a1 _dIl 1
L— — + =1 =V (t). 13.1
dt2+Rdt+C V;n() (3 7)

Once you know the current I(¢) you get the output voltage Vout(t) from
Vout(t) = RI(t).

In general you can write down a differential equation for any electrical circuit. As you add more
components the equation gets more complicated, but if you stick to resistors, inductances and
capacitors the equations will always be linear, albeit of very high order.

The reader should consider watching You [T by Zach Star for some current applications of
differential equations.

13.10 PROBLEMS

GENERAL QUESTIONS

840. Classify each of the following as homogeneous linear, inhomogeneous linear, or nonlinear
and specify the order. For each linear equation say whether or not the coefficients are constant.

(i) ¥"+y=0 (if) 2y +yy =0
(iii) zy" —y =0 (iv) =y’ +yy' ==
(v) o'~y == (vi) ¥ +y=ze”.

841. (i) Show that y = 22 + 5 is a solution of xy” — 3y’ = 0.
ii) Show that y = Ci22 + C5 is a solution of xy” — ¢/ = 0.
(i) y Y~y
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https://www.youtube.com/watch?v=ifbaAqfqpc4

842. (i) Show that y = (tan(ciz + ¢2))/c1 is a solution of yy” = 2(y')? — 2y/.
(ii) Show that y; = tan(x) and yo = 1 are solutions of this equation, but that y; + y2 is not.

(iii) Is the equation linear homogeneous?

SEPARATION OF VARIABLES

843. Consider the differential equation

dy 4—y?

dt 4

(a) Find the solutions yo, y1, y2, and y3 which satisfy yo(0) = 0, y1(0) = 1, y2(0) = 2 and
yg(O) = 3.
(b) Find limy_eo yi(t) for £ =1,2,3.
(c) Find limy—, o y(t) for k = 1,2, 3.
(d) Graph the four solutions yo, ..., ys.
(e) Show that the quantity z = (y + 2)/4 satisfies the so-called Logistic Equation
d
d—f =z(l —x).
(Hint: if z = (y+2)/4, then y = 4x —2; substitute this in both sides of the diffeq for y). 1400

% 3k %

In each of the following problems you should find the function y of  which satisfies the conditions
(A is an unspecified constant: you should at least indicate for which values of A your solution
is valid.)

dy 2 dy 1+

844. 2 =0,y(1) =5. 400 847. < =0,y(0) = A. 401
o T y=0y) T dx+1+y ;y(0) ]
d

845. £+(1+3x2)y:0,y(1):1. 400 848. %+1—y2:0,y(0):A. 401

x

dy 2, _ _ dy 2 _ —

846. @—Fa:cos y=0,y(0)=7%. 1400 849. a%—l—ky =0,y(0) = A. 1401

850. Find the function y of  which satisfies the initial value problem:

dy 2?2 —1
= =0 0)=1
o ; y(0)
1401
851. Find the general solution of
gyr+-2y<+-ezzz
dx
1401
dy sin x
852. Ef———(cosx)y:::e ,y(0) = A. 7401
x
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d
853. y2£ a3 =0,y(0) = A. +401

854. Read Example 13.4.2 on “Leaky bucket dating” again. In that example we assumed that
a —
GVK =2.
(a) Solve diffeq for h(t) without assuming 4+ K = 2. Abbreviate C = $V K.

(b) If in an experiment one found that the bucket empties in 20 seconds after being filled to
height 20 cm, then how much is the constant C?

LINEAR HOMOGENEOUS

855. (a) Show that y = 4e® + 7e?* is a solution of 3" — 3y’ + 2y = 0.
(b) Show that y = C1e® + C2e?® is a solution of y" — 3y’ + 2y = 0.
(c) Find a solution of ¥ — 3y’ + 2y = 0 such that y(0) = 7 and 3'(0) = 9.

856. (a) Find all solutions of g—g + 2y = 0.
(b) Find all solutions of % +2y=e".
(c) Findyif%—{—Qy:e_x and y = 7 when = = 0.

857. (a) Find all real solutions of

d’y dy
S 6 i1y =0.
a2 Va T

(b) Find y if
y" — 6y +10y =0,
and in addition y satisfies the initial conditions y(0) = 7, and y'(0) = 11. 1401

858. Solve the initial value problem:

y//_5y/+4y50

y(0) =2
y'(0) = -1
1401
859. For y as a function of z, find the general solution of the equation:
y" — 2y +10y =0
1401
ko ok
Find the general solution y = y(z) of the following differential equations
dly dly d?%y
860. — = 401 862. — — —= =0 401
et Y f dz?  da? f
d*y dty &%
861. — =0 401 863. — +—=0 401
dat Ty f dzt * dz? f
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) =

jf; 871. f”%x 125f( ) = +403
865. —5-y=0 1402 872. u®(z) — 32u(z) = 0. +403
866. yW(t) —2y"(t) —3y(t) =0 1402 873. v (z) + 32u(x) = 0.
867. yW(t) +4y"(t) +3y(t) =0. 1402 874. ”ﬂ) U+®() y(t) = 0. 1404
868. yW(t)+2y"(t)+2y(t) =0. 1402 875. h(t) — h®)(t) 4+ 4h"(t) — 4h(t) =
869. y™W(t) 4+ y"(t) — 6y(t) = 0. 8ﬂ1z”@y—m(w+44m:0. 1404

Solve each of the following initial value problems. Your final answer should not use complex
numbers, but you may use complex numbers to find it.

877. v"+9y =0, y(0) =0,y'(0) = —3. 1404 885. ' + 6y +5y =0, y(0) = 0,y(0) = 1.
1404
878. y"+9y = 0, y(0) = —3,4/(0) = 0. 1404 L /
886. y" —4y' +5y =0, y(0) = 1,7/(0) = 0.
879. y" — 5y’ + 6y =0, y(0) = 0,4'(0) = 1. 1404
1404 887. y' — 4y + 5y =0, y(0) = 0,4(0) = 1.
880. 4’ + 5y + 6y =0, y(0) = 1,/(0) = 0. 7404
1404 888. " + 4y +5y = 0, y(0) = 1,4/(0) = 0.
881. y" + 5y + 6y = 0, y(0) = 0,4/(0) = 1. f404
7404 889. ' + 4y + 5y =0, y(0) = 0,y(0) = 1.
882. ¢’ — 6y + 5y =0, y(0) = 1,4/(0) =0 e
-y =6y +5y =0, y(0) = 1,y (0) = 0. v ,
+404 890. y" — 5y + 6y =0, y(0) = 1,7/(0) = 0.
404

883. y" — 6y’ +5y =0,y(0) =0.y'0) =1 g1 pwey & ey = Py + 1550

= 0,
f404 with initial conditions f(0) = 0, f(0) =
884. y’ + 6y’ +5y =0, y(0) = 1,5/(0) = 0. L, f"(0)=0
+404 +405

LINEAR INHOMOGENEOUS

892. Find particular solutions of
y// _ 3y/ + 2y — 6333
y' =3y +2y=¢€"
Y — 3y 4 2y = 4¢3 + 5e”
* ok ok

893. Find a particular solution of the equation:

V' +y 42y ="+ +1
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+405

Find the general solution y(t) of the following differential equations

d2y d2y

894. 2 V= 2 1405 897. w + 9y = cost 7405
d2y d2y

895. aﬁ~—y:2& 1405 898. —5 +y = cost 1405
d? d?

896. Hg + 9y = cos 3t 1405 899. dTg + y = cos 3t. 1405

900. Find y if

@ S¥al iy yo0) =2, v =3
(b) ((11:2;; + 2% +y=e" y(0) =0, y'(0)=0
(c) jig + 2% +y=uze " y(0) =0, y'(0)=0
(d) ji‘z + 2% +y=e " +ze " y(0) = 2, y'(0) = 3.

Hint: Use the Superposition Principle to save work.

901. (i) Find the general solution of
24 + 5z =€t

using complex exponentials. 1405
(ii) Solve
2"+ 42 4+ 52 = sint

using your solution to question (i).

(iii) Find a solution for the equation
2422 422 = 2e (171

in the form z(t) = u(t)e~(1=9t,

(iv) Find a solution for the equation
2" + 22 + 22 = 2e " cost.

Hint: Take the real part of the previous answer.

(v) Find a solution for the equation

y" 4+ 2y 4 2y = 2e tsint.
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APPLICATIONS

902. A population of bacteria grows at a rate proportional to its size. Write and solve a differential
equation which expresses this. If there are 1000 bacteria after one hour and 2000 bacteria after
two hours, how many bacteria are there after three hours?

903. Rabbits in Madison have a birth rate of 5% per year and a death rate (from old age) of 2%
per year. Each year 1000 rabbits get run over and 700 rabbits move in from Sun Prairie. 1405
(i) Write a differential equation which describes Madison’s rabbit population at time ¢.

(if) If there were 12,000 rabbits in Madison in 1991, how many are there in 19947

904. According to Newton’s law of cooling the rate dT'/dt at which an object cools is propor-
tional to the difference T'— A between its temperature T and the ambient temperature A. The
differential equation which expresses this is

dr
E_kr-A
g =M )

where k < 0 and A are constants.

(i) Solve this equation and show that every solution satisfies

lim T = A.

t—o0
(ii) A cup of coffee at a temperature of 180°F sits in a room whose temperature is 75°F. In
five minutes its temperature has dropped to 150°F. When will its temperature be 90°F? What
is the limit of the temperature as t — oo0?

+406

905. Retaw is a mysterious living liquid; it grows at a rate of 5% of its volume per hour. A scientist
has a tank initially holding yy gallons of retaw and removes retaw from the tank continuously
at the rate of 3 gallons per hour. 1406

(i) Find a differential equation for the number y(¢) of gallons of retaw in the tank at time ¢.
(if) Solve this equation for y as a function of ¢. (The initial volume yo will appear in your
answer. )

(iii) What is limy—,o y(t) if yo = 1007

(iv) What should the value of yo be so that y(t) remains constant?

906. A 1000 gallon vat is full of 25% solution of acid. Starting at time ¢t = 0 a 40% solution
of acid is pumped into the vat at 20 gallons per minute. The solution is kept well mixed and
drawn off at 20 gallons per minute so as to maintain the total value of 1000 gallons. Derive an
expression for the acid concentration at times ¢t > 0. As t — oo what percentage solution is
approached? 1406

907. The volume of a lake is V = 10° cubic feet. Pollution P runs into the lake at 3 cubic feet
per minute, and clean water runs in at 21 cubic feet per minute. The lake drains at a rate of

24 cubic feet per minute so its volume is constant. Let C be the concentration of pollution in
the lake; i.e. C = P/V.
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1407
(i) Give a differential equation for C.

(if) Solve the differential equation. Use the initial condition C' = Cy when ¢ = 0 to evaluate
the constant of integration.

(iii) There is a critical value C* with the property that for any solution C' = C(t) we have

lim C = C*.

t—00
Find C*. If Cy = C*, what is C(t)?

908. A philanthropist endows a chair. This means that she donates an amount of money By to
the university. The university invests the money (it earns interest) and pays the salary of a
professor. Denote the interest rate on the investment by r (e.g. if r = .06, then the investment
earns interest at a rate of 6% per year) the salary of the professor by a (e.g. a = $50,000 per
year), and the balance in the investment account at time ¢ by B.

(i) Give a differential equation for B.

(if) Solve the differential equation. Use the initial condition B = By when ¢ = 0 to evaluate
the constant of integration.

(iii) There is a critical value B* with the property that (1) if By < B*, then there isat > 0
with B(t) = 0 (i.e. the account runs out of money) while (2) if By > B*, then lim;_,o, B = occ.
Find B*.

(iv) This problem is like the pollution problem except for the signs of r and a. Explain.

909. A citizen pays social security taxes of a dollars per year for 17 years, then retires, then
receives payments of b dollars per year for T5 years, then dies. The account which receives and
dispenses the money earns interest at a rate of r% per year and has no money at time t = 0
and no money at the time ¢t = T} 4+ 15 of death. Find two differential equations for the balance
B(t) at time t; one valid for 0 < ¢t < T3, the other valid for 77 < ¢t < T} + T5. Express the
ratio b/a in terms of T3, To, and r. Reasonable values for T1, T, and r are T1 = 40, To = 20,
and r = 5% = .05. This model ignores inflation. Notice that 0 < dB/dt for 0 < ¢ < T3, that
dB/dt < 0 for Th <t < Ty + T», and that the account earns interest even for Tp <t < T} + Tb.

910. A 300 gallon tank is full of milk containing 2% butterfat. Milk containing 1% butterfat is
pumped in a 10 gallons per minute starting at 10:00 AM and the well mixed milk is drained
off at 15 gallons per minute. What is the percent butterfat in the milk in the tank 5 minutes
later at 10:05 AM? Hint: How much milk is in the tank at time ¢t?7 How much butterfat is in
the milk at time t = 07

911. A sixteen pound weight is suspended from the lower end of a spring whose upper end is
attached to a rigid support. The weight extends the spring by half a foot. It is struck by a
sharp blow which gives it an initial downward velocity of eight feet per second. Find its position
as a function of time.

912. A sixteen pound weight is suspended from the lower end of a spring whose upper end is
attached to a rigid support. The weight extends the spring by half a foot. The weight is pulled
down one feet and released. Find its position as a function of time.

913. The equation for the displacement y(t) from equilibrium of a spring subject to a forced
vibration of frequency w is
d?
d—tg + dy = sin(wt). (13.18)
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(i) Find the solution y = y(w,t) of (13.18) for w # 2 if y(0) = 0 and y/(0) = 0.
(if) What is lim,, 92 y(w,t)?
(iii) Find the solution y(t) of
2
% + 4y = sin(2¢) (13.19)
if y(0) =0 and 3'(0) = 0. (Hint: Compare with (13.18).)
914. Suppose that an undamped spring is subjected to an external periodic force so that its
position y at time ¢ satisfies the differential equation

d? ,
dTg?/ + wiy = csin(wt).

(i) Show that the general solution is

C
y = Cq coswgt + Cs sinwpt + —— sinwt.
UJO — W

when wg # w.
(if) Solve the equation when w = wy.
(iii) Show that in part (i) the solution remains bounded as ¢ — oo but in part (ii) this is not so.
(This phenomenon is called resonance. To see an example of resonance try Googling “Tacoma
Bridge Disaster.”)

915. Have look at the electrical circuit equation (13.17) from §13.9.4.
(i) Find the general solution of (13.17), assuming that Viy(¢) does not depend on time t. What
is limyy00 I(8)7
(if) Assume for simplicity that L = C' = 1, and that the resistor has been short circuited,
i.e. that R = 0. If the input voltage is a sinusoidal wave,

Vin(t) = Asinwt, (w#1)

then find a particular solution, and then the general solution.

(iif) Repeat problem (ii) with w = 1.

(iv) Suppose again that L = C' = 1, but now assume that R > 0. Find the general solution
when Vi, (t) is constant.

(v) Still assuming L = C' =1, R > 0 find a particular solution of the equation when the input
voltage is a sinusoidal wave

Vin(t) = Asinwt.

916. You are watching a buoy bobbing up and down in the water. Assume that the buoy
height with respect to the surface level of the water satisfies the damped oscillator equation:
2" 4+ b2’ + kz = 0 where b and k are positive constants.

Something has initially disturbed the buoy causing it to go up and down, but friction will
gradually cause its motion to die out.

You make the following observations: At time zero the center of the buoy is at z(0) =0, i.e.,
the position it would be in if it were at rest. It then rises up to a peak and falls down so that
at time ¢ = 2 it again at zero, z(2) = 0 descends downward and then comes back to 0 at time
4, i.e, z(4) = 0. Suppose z(1) = 25 and 2(3) = —16.

(a) How high will z be at time ¢t = 57
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(b) What are b and k7
Hint: Use that z = Ae® sin(wt + B).
+407

917. Contrary to what one may think the buoy does not reach its peak at time t = 1 which is
midway between its first two zeros, at t = 0 and ¢t = 2. For example, suppose z = e 'sint.
Then z is zero at both ¢ = 0 and ¢ = 7. Does z have a local maximum at ¢ = 57

1407
918. In the buoy problem 916 suppose you make the following observations:

It rises up to its first peak at ¢ = 1 where z(1) = 25 and then descends downward to a local
minimum at at ¢ = 3 where 2(3) = —16.

(a) When will the buoy reach its second peak and how high will that be?
(b) What are b and k?
Note: It will not be the case that z(0) = 0.

+407

Linear operators

Given a polynomial p = p(x) = ag + a1r + ax?® + ... + a,2" and z = z(t) an infinitely
differentiable function of ¢ define
Ly(2) = apz + a1z + a2 + ..+ a, 2™

where z(¥) = % is the k" derivative of z with respect to t.

919. Show for £ = £, that
(a) L(z1 + 2z2) = L(21) + L(22)
(b) £L(Cz) = CL(z) where C is any constant

Such an £ is called a linear operator. Operator because it takes as input a function and then
ouputs another function. Linear refers to properties (a) and (b).

920. Let 7 be any constant and p any polynomial. Show that £,(e™) = p(r)e".
921. For p and g polynomials show that

Lprq(2) = Lp(2) + Lg(2)
922. For p and g polynomials show that

Lpq(2) = Lp(Lg(2))
Here p - q refers to the ordinary product of the two polynomials.

923. Let a be a constant. For any w an infinitely differentiable function of ¢ show that
(a) Lo_alu-et) = uMet
(b) Lz (u-e) = u(™ et
1407
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924. Let a be any constant, p a polynomial, and suppose that (x — )™ divides p. Show that for
any k <n

L,(the?) =0

925. Suppose that p(z) = (x —aq)™ - -+ (x — @, )"™ where the a; are distinct constants. Suppose
that

5= Cllemt + C%tealt 4. C{”t"l_leo‘lt 4t Crlne()Mt + C?nteo‘mt 4. C;letnm—leamt

Show that £,(z) = 0.

In a more advanced course in the theory of differential equations it would be proved that every

solution of £,(z) = 0 has this form, i.e., z satisfies the above formula for some choice of the
constants C’J’

926. Suppose L is a linear operator and b = b(t) is a fixed function of ¢. Suppose that zp is
one particular solution of £(z) = b, i.e., L(zp) = b. Suppose that z is any other solution of
L(z) = b. Show that £(z — zp) = 0. Show that for any solution of the equation £(z) = b there
is a solution zg of the associated homogenous equation such that z = zp + zp.

Variations of Parameters

927. Given the equation
L(z)=2"4+ap? +a12=b

where ag, a1, b are given functions of ¢. Then

L(fz14+g22) =0

where
zp, = Crz1 + Cazo

is the general solution of the associated homogenous equation £(z) = 0 and the derivatives of

f and g satisfy:
0 Z9 Z1 0
det ( ; > det ( ; >
I b 2z , z; b

g =
det(Z} Z$> det(z,l Z$>
21 % z21 %
Use these formulas to find the general solution of
2"+ 2 = (cost)?
928. Use these formulas to find the general solution of

1
M= —
sint

1407
929. Solve the initial value problem:

2"+ z = (tant)?
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2'(0) = -1
1407
930. Find the general solution of
1
" J—
- el tet
931.
Given a system of linear equations
ar + by = r
cx +dy = s
show that the solution is given by:
det(rb> det(ar>
s d c s
r= - y = ———--
a b a b
det(cd) det<cd)
You may assume the determinant:
det( @b > =ad — be
c d
is not zero.
1407
932. Given the linear operator £(z) = 2" 4+ apz’ + a1z suppose £(z1) = 0 and L£(z2) = 0 and that
f and g are functions of ¢ which satisfy f’z; + ¢g’2zo = 0. Show that
L(fz1+gz) =21+ 9 7
933. Prove that the formulas given problem 927 work.
1407
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Chapter 14

Vectors

14.1 Introduction to vectors

Definition 14.1.1. A vector is a column of two, three, or more numbers, written as

ai
- al - -
a= or a=|ay or a=

a2

a

as an

in general.

The length of a vector a = (%) is defined by

ai
lall = |[{ o2 ) | = /o + a3 + a3
as

We will always deal with either the two or three dimensional cases, in other words, the cases
n = 2 or n = 3, respectively. For these cases there is a geometric description of vectors which
is very useful. In fact, the two and three dimensional theories have their origins in mechanics
and geometry. In higher dimensions the geometric description fails, simply because we cannot
visualize a four dimensional space, let alone a higher dimensional space. Instead of a geometric
description of vectors there is an abstract theory called Linear Algebra which deals with
“vector spaces” of any dimension (even infinite!). This theory of vectors in higher dimensional
spaces is very useful in science, engineering and economics. You can learn about it in courses
like MATH 320 or 340/341.

14.1.1 Basic arithmetic of vectors

You can add and subtract vectors, and you can multiply them with arbitrary real numbers. this
section tells you how.

The sum of two vectors is defined by
al b1 aj + b1
= 14.1
(o) + () = (2 352), e
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and

a1 b1 ay + by
az | + | b2 | = a2+ b
as bg as + b3

The zero wvector is defined by

It has the property that

no matter what the vector a is.

ai
You can multiply a vector @ = [ as | with a real number ¢ according to the rule
as
ta1
tﬁ: = tag
tag
In particular, “minus a vector” is defined by
—a=(-1)a=|—a

The difference of two vectors is defined by
a—b=ad+ (—b).

So, to subtract two vectors you subtract their components,

a by a; — by
(_i —b= a9 — b2 = ag — b2
as b3 asz — b3

14.1.2 Some GOOD examples.

6)+()=(2)
B-(4)-(F5)  D=D-0)
o (0) = () =9 (7% -0 ()
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14.1.3 Two very, very BAD examples.

Vectors must have the same size to be added, therefore

9 1
< > + | 3 | = undefined!!!
3 2

Vectors and numbers are different things, so an equation like
a =3 is nonsense!

This equation says that some vector (@) is equal to some number (in this case: 3). Vectors
and numbers are never equal!

14.1.4 Algebraic properties of vector addition and multiplica-
tion

Addition of vectors and multiplication of numbers and vectors were defined in such a way that
the following always hold for any vectors @, b, € (of the same size) and any real numbers s, ¢

i+b=b+a [vector addition is commutative] (14.2)

i+ (b+¢) = (@+b)+¢é [vector addition is associative] (14.3)
t(@ + b) = ta + tb [first distributive property] (14.4)
(s+t)a=sa+ta [second distributive property] (14.5)

14.1.5 Prove (14.2).

- b
Let @ = (g%) and b = <b;> be two vectors, and consider both possible ways of adding them:

bs
ap b1 ay + by b1 ay b1 + a1
az | + b2 | = | ax+0b2 and bo | + a2 | = | b2+ a2
as b3 as + b3 b3 as bs + as

We know (or we have assumed long ago) that addition of real numbers is commutative, so that
a1 + b1 = b1 + a1, etc. Therefore

. — ai+b1 bi+ai — .
a+b=| ax+tb | = | botaz | = b+ a.
a3+bs bz+as

This proves (14.2).

14.1.6 Example

If ¥ and @ are two vectors, we define
@=20+3w, b=-9+w.
Problem: Compute a + b and 2@ — 3b in terms of ¥ and .
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Solution:

d+b=(20+30)+ (—F+®) = (2—1)T+ (34 1) = ¥ + 4w
2d — 3b = 2(23 + 3 6 3

\%
|
w
|
]
_I._
\%
I
N [\]

g1
+
g
_I._
Y
e

|

Problem: Find s,t so that sa + th = 3.
Solution: Simplifying sa + tb you find

5@+ tb = 5(20 + 3W) + t(—T + W) = (25 — )T + (35 + 1)W.

One way to ensure that sa + tb = © holds is therefore to choose s and ¢ to be the solutions of

2s —t =1
3s+t=0
The second equation says t = —3s. The first equation then leads to 2s + 3s = 1, i.e. s = %
Since t = —3s we get t = —%. The solution we have found is therefore
lg-3b=4.

14.1.7 Geometric description of vectors

Vectors originally appeared in mechanics, where they represented forces: a force acting on some
object has a magnitude and a direction. Thus a force can be thought of as an arrow, where
the length of the arrow indicates how strong the force is (how hard it pushes or pulls).

So we will think of vectors as arrows: if you specify two points P and @, then the arrow
pointing from P to @ is a vector and we denote this vector by P().

The precise mathematical definition is as follows:

Definition 14.1.2. For any pair of points P and @) whose coordinates are (p1,p2,ps) and
(g1, g2, q3) one defines a vector PQ by

q1 —P1
I?Cj: q2 — P2
q3 — P3

If the initial point of an arrow is the origin O, and the final point is any point (), then the
vector @ is called the position vector of the point Q.

r

=]l
Q

Figure 14.1: A vector from two position vectors
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If p and g are the position vectors of P and (), then one can write ]@ as

q1 p1
1@ =|q@|-—|p]|=4d-p
q3 b3

For plane vectors we define F@ similarly, namely, 1@ = (g; :g; ) The formula for the distance
between two points P and () in the plane

distance from P to @) = \/(ql —p1)? + (g2 — p2)?

says that the length of the vector P@ is just the distance between the points P and @, i.e.

distance from P to @) = HP@H .

This formula generalises if P and @) are points in 3D space.

distance from P to Q = \/(ql —p1)?+ (g2 — p2)? + (g3 — p3)?

14.1.8 Example

The point P has coordinates (2,3); the point @ has coordinates (8,6). The vector P@ is

therefore
ﬁ 8 —2 6

This vector is the position vector of the point R whose coordinates are (6,3). Thus

- at- ().

The distance from P to @ is the length of the vector ]@, ie.

distance P to Q = H <g) H =162+ 32 =3,/5.

14.1.9 Example

)andb = (

O

)

Find the distance between the points A and B whose position vectors are @ = (

O

respectively.
Solution: One has
-1

distance A to B = |AB| = lb—a|=||[ 0 ||| = VC1Z+ 02+ 12 =,/
1
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14.1.10 Geometric interpretation of vector addition and multi-
plication

Suppose you have two vectors @ and b. Consider them as position vectors, i.e. represent them
by vectors that have the origin as initial point:

i—0A B=0B.

Then the origin and the three endpoints of the vectors a, b and @+ b form a parallelogram.
See figure 14.2.

S
Sl
+
S

Sh

Figure 14.2: three dimensional vector addition by completing the parallelogram.

To multiply a vector @ with a real number ¢ you multiply its length with |¢; if ¢ < O you reverse
the direction of d.

Figure 14.3: Vector negation and scalar multiplication.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();




14.1.11 Example 14.1.6, geometrically

In example 14.1.6 we assumed two vectors ¥ and w were given, and then defined @ = 2¥ + 3w
and b = —% + @. In figure 14.4 the vectors @ and b are constructed geometrically from some
arbitrarily chosen @ and @. We also found algebraically in example 14.1.6 that @+ b = @ + 4.
The drawing in figure 14.4 illustrates this.

Y
a+b
. gy V40
b= —+w---"~ |
v d — ‘
Y v i = 20 + 3

=1

Figure 14.4: Picture proof that @ + b=7%+4% in example 14.1.11

For a good introduction to vector addition and multiplication by a scaler the reader should
consider watching You [T by 3BluelBrown .

14.2 Parametric equations for lines and planes

Given two distinct points A and B we consider the line segment AB. If X is any given point
on AB then we will now find a formula for the position vector of X.

Define t to be the ratio between the lengths of the line segments AX and AB,
_ length AX
~ length AB’

Then the vectors ﬁ and E are related by B = tﬁ. Since AX is shorter than AB we
have 0 < t < 1.

The position vector of the point X on the line segment AB is
OX = OA+ AX = OA + tAB.
If we write a, 5, & for the position vectors of A, B, X, then we get
Z=(1—t)@+th=d+tb—a). (14.6)

This equation is called the parametric equation for the line through A and B. In our
derivation the parameter ¢ satisfied 0 < ¢ < 1, but there is nothing that keeps us from substi-
tuting negative values of ¢, or numbers ¢ > 1 in (14.6). The resulting vectors & are position
vectors of points X which lie on the line ¢ through A and B.
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Figure 14.5: Constructing points on the line through A and B.

14.2.1 Example

[Find the parametric equation for the line ¢ through the points A(1,2) and B(3,—1), and
determine where /¢ intersects the x; axis. |

Solution: The position vectors of A, B are @ = (1) and b= (1), so the position vector of an
arbitrary point on £ is given by

seaiioa= (3o (37) = () e (5)- (672)

where ¢ is an arbitrary real number.

This vector points to the point X = (1 + 2t,2 — 3t). By definition, a point lies on the xj-axis if
its 9 component vanishes. Thus if the point

X = (1+2t,2—3t)

lies on the xq-axis, then 2 — 3t =0, i.e. t = % The intersection point X of ¢ and the x;-axis is

Le.t
therefore X|,_g/3 = (1+2- %70) = (%ao)'

14.2.2 Midpoint of a line segment.

If M is the midpoint of the line segment AB, then the vectors m and ]\ﬁ are both parallel
and have the same direction and length (namely, half the length of the line segment AB). Hence
they are equal: Zﬁ\? = ]\ﬁ If @, m, and b are the position vectors of A, M and B, then this
means N B

w — & =AM = MEB = b — m.
Add m and @ to both sides, and divide by 2 to get

i+b

E:
2

m = 5d+

DO
DO
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14.2.3 Parametric equations for planes in space*

You can specify a plane in three dimensional space by naming a point A on the plane P, and
two vectors U and w parallel to the plane P, but not parallel to each other. Then any point on
the plane P has position vector & given by

T =a+ b+t (14.7)

Figure 14.6: Generating points on a plane P

The following construction explains why equation (14.7) will give you any point on the plane
through A, parallel to U, w.

Let A, ¥, @ be given, and suppose we want to express the position vector of some other point
X on the plane P in terms of @ = OA, ¥, and .

OX = OA + AX.

Next, you draw a parallelogram in the plane P whose sides are parallel to the vectors ¥ and 0,
and whose diagonal is the line segment AX. The sides of this parallelogram represent vectors
which are multiples of ¥ and @ and which add up to AX. So, if one side of the parallelogram
is 53 and the other @ then we have AX = sU +tw. With OX = ﬁ—i—ﬁ this implies (14.7).

First we note that

14.3 Vector Bases

14.3.1 The Standard Basis Vectors

The notation for vectors which we have been using so far is not the most traditional. In the
late 19th century GiBBs and HEAVYSIDE adapted HAMILTON’s theory of Quaternions to deal
with vectors. Their notation is still popular in texts on electromagnetism and fluid mechanics.

302




Define the following three vectors:

Then every vector can be written as a linear combination of ;, _; and E, namely as follows:

a1
as | = a1t + azj + ask.
as

ST
I

Moreover, there is only one way to write a given vector as a linear combination of {i,7,k}.

This means that
ay = bl

a1 + agg + azk = bii + byj + bsk < { ap = by

() 50

and just as for three dimensional vectors one can write every (plane) vector @ as a linear

combination of ¢z and 7,
al rd e
= a7+ as).
a2

Just as for space vectors, there is only one way to write a given vector as a linear combination
of 7 and j.

a3:b3

For plane vectors one defines

—

—

a= a1t + asj

Figure 14.7: Expressing a vector as the sum of scalar multiples of unit vectors

If we know the length of the vector and the angle it makes with the axes unit vectors we can
deduce the components of the vector:

In 2 dimensions we have:
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a
\0

aL = || cos @

as = |@|siné

X

Figure 14.8: a vector in the plane is decomposed into its components

whilst in three dimensions we have:

= |@]| sin O sin ¢

a; = |d| sin@co?qﬁ

Figure 14.9: a three dimensional vector is decomposed into its components

14.3.2 A Basis of Vectors (in general)*

The vectors 'Z, ; , k are called the standard basis vectors. They are an example of what is
called a “basis”. Here is the definition in the case of space vectors:

Definition 14.3.1. A triple of space vectors {u,v,w} is a basis if every space vector @ can
be written as a linear combination of {u, 9, w}, i.e.

a = a,U + a,¥ + a,W,

and if there is only one way to do so for any given vector @ (i.e. the vector @ determines the
coefficients ay,, Gy, ay).

For plane vectors the definition of a basis is almost the same, except that a basis consists of
two vectors rather than three:

Definition 14.3.2. A pair of plane vectors {u, v} is a basis if every plane vector @ can be
written as a linear combination of {4, v}, i.e. @ = a,U + a,9, and if there is only one way to
do so for any given vector @ (i.e. the vector @ determines the coefficients a,, ay).

To understand Basis vectors and the span of a collection of vectors the reader should watch
Youl D by 3BluelBrown
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https://www.youtube.com/watch?v=k7RM-ot2NWY&list=RDCMUCYO_jab_esuFRV4b17AJtAw&index=15

14.4 Dot Product

Definition 14.4.1. The “inner product” or “dot product” of two vectors is given by

al b1
az | - | b2 | = aiby + azbs + asbs.
as b3

Note that the dot-product of two vectors is a number!

The dot product of two plane vectors is (predictably) defined by

<a1) . <b1> = a1b1 + ashs.
a9 b2

An important property of the dot product is its relation with the length of a vector:
|@||* = a-a. (14.8)

14.4.1 Algebraic properties of the dot product

The dot product satisfies the following rules,

a-b=bd (14.9)
a-(b+¢) = ab+aé (14.10)
(b+ &)@ =b-d+ca (14.11)

t(a@-b) = (ta)-b (14.12)

which hold for all vectors a, 5, ¢ and any real number ¢.

14.4.2 Example

Simplify ||@ + b||2.
One has

14.4.3 The diagonals of a parallelogram

Here is an example of how you can use the algebra of the dot product to prove something in
geometry.

Suppose you have a parallelogram one of whose vertices is the origin. Labelﬁthe vertices, starting
at the origin and going around counterclockwise, O, A, C' and B. Leta = OA, b= 0B,¢é =0

One has . .
@:E:Ei—i—b, and E:b—&.
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These vectors correspond to the diagonals OC and AB

@)

Figure 14.10: two vectors form a parallelogram

Theorem 14.4.1. In a parallelogram OAC B the sum of the squares of the lengths of the two
diagonals equals the sum of the squares of the lengths of all four sides.

Proof. The squared lengths of the diagonals are

|OC1? = | + B = |ja|®* + 265 + |B]*
|AB? = |a - 8| = ja|®* - 265 + |B]*

Adding both these equations you get
|OCIP + | ABI? =2 (la|l* + 15]?) .
The squared lengths of the sides are
IOAI? = ||a|%, | ABI” = |B]%, BC|> = &> I0C|> = |B]*

Together these also add up to 2 (Hc_in + ][5\|2) O

14.4.4 The Law of cosines

We will need the law of cosines from high-school trigonometry.

Theorem 14.4.2. Recall that for a triangle OAB with angle 6 at the point O, and with sides
OA and OB of lengths a and b, the length ¢ of the opposing side AB is given by

& =a® 4+ b? — 2abcos . (14.13)
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Figure 14.11: Law of cosines, |2 = |a@|2 + |b|2 — 2|a@]|b] cos 6.

Proof. Consider figure 14.11. In trigonometry this law is proved by dropping a perpendicular
line from B onto the side OA. The triangle OAB gets divided into two right triangles, one of
which has AB as hypotenuse. Pythagoras then implies

¢ = (bsin6)* + (a — bcos6)? .

After simplification you get (14.13). O

14.4.5 The dot product and the angle between two vectors

Here is the most important interpretation of the dot product:

Theorem 14.4.3. If the angle between two vectors @ and b is 0, then one has
a-b=|all - ||b]| cosé.

Proof. To prove the theorem consider figure 14.11 again. Let O be the origin, and then observe
that the length of the side AB is the length of the vector E —b—a. Here @ = ﬁ, b= O?,
and hence
& =|b—a|* = (b—a)-(b—a) = ||bl* + |ld@|* — 2a-b.
Compare this with (14.13), keeping in mind that a = ||@| and b = ||b||: you are led to conclude
that —2@-b = —2abcos 6, and thus @-b = ||d@|| - ||b]| cos 6.
O

14.4.6 Orthogonal projection of one vector onto another

The following construction comes up very often. Let @ # 0 be a given vector. Then for any
other vector & there is a number A such that

%= A\d+ 7

where 9 L d. In other words, you can write any vector & as the sum of one vector parallel to
a and another vector orthogonal to a.
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Figure 14.12: given & and G, find ) and Z .

The two vectors A\d@ and g are called the parallel and orthogonal components of the vector
& (with respect to @), and sometimes the following notation is used

& =xa, & =4y,
so that
There are moderately simple formulas for #/ and cE'L, but it is better to remember the following

derivation of these formulas.

Assume that the vectors @ and & are given. Then we look for a number A such that § = & — \d@
is perpendicular to @. Recall that @ L (£ — A\a) if and only if

G-(Z — \a@) = 0.

Expand the dot product and you get this equation for A

whence

A=—— = (14.14)

To compute the parallel and orthogonal components of & w.r.t. @ you first compute A according
to (14.14), which tells you that the parallel component is given by

!

# =xa=2%a.

QL
QL

The orthogonal component is then “the rest,” i.e. by definition =z , SO

Q
8

i 7 a.

81
2
Q

To fully understand the connection between dot products and projections consider watching
Youl D by 3BluelBrown .
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14.4.7 Defining equations of lines

In § 14.2 we saw how to generate points on a line given two points on that line by means of a
“parametrization.” l.e. given points A and B on the line ¢ the point whose position vector is

—

& = a+t(b— a) will be on ¢ for any value of the “parameter” ¢.

In this section we will use the dot-product to give a different description of lines in the plane
(and planes in three dimensional space.) We will derive an equation for a line. Rather than
generating points on the line £ this equation tells us if any given point X in the plane is on the
line or not.

—

X -~

Sy

@)

Figure 14.13: Is X on ¢

Here is the derivation of the equation of a line in the plane. To produce the equation you need
two ingredients:

1. One particular point on the line (let’s call this point A, and write @ for its position vector),
2. a normal vector ni for the line, i.e. a nonzero vector which is perpendicular to the line.

Now let X be any point in the plane, and consider the line segment AX.

e Clearly, X will be on the line if and only if AX is parallel to £ !

e Since /£ is perpendicular to 7, the segment AX and the line ¢ will be parallel if and only
if AX L n.

e AX 1 7 holds if and only if B’fi =0.

So in the end we see that X lies on the line £ if and only if the following vector equation is
satisfied:

AXA=0 or (F—&)-=0 (14.15)
This equation is called a defining equation for the line (.

Any given line has many defining equations. Just by changing the length of the normal you get
a different equation, which still describes the same line.

! From plane Euclidean geometry: parallel lines either don’t intersect or they coincide.
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14.4.7.1 Example, find a line through one point and perpendicular to an-
other.

Find a defining equation for the line ¢ which goes through A(1,1) and is perpendicular to the
line segment AB where B is the point (3, —1).

1 14
/
/
/
/

| 4 o
p A

B=(3-1)

Figure 14.14: example, find an equation for £

Solution. We already know a point on the line, namely A, but we still need a normal vector.
The line is required to be perpendicular to AB, so 1 = AB is a normal vector:

=i (501 = (%)

Of course any multiple of 7i is also a normal vector, for instance
. ~ 1

With @ = (1) we then get the following equation for ¢

7i-(& — @) = <22> : (i; - D = 201 — 215 = 0.

If you choose the normal m instead, you get

o s o 1 1 —1
m-(Z —a) = <_1>-<x;_1>:$1—x2:0.

Both equations 221 — 2292 = 0 and 1 — 5 = 0 are equivalent.

is a normal vector.

14.4.8 Distance to a line

Let £ be a line in the plane and assume a point A on the line as well as a vector 72 perpendicular
to £ are known. Using the dot product one can easily compute the distance from the line to
any other given point P in the plane. Here is how:

Draw the line m through A perpendicular to ¢, and drop a perpendicular line from P onto m.
let @) be the projection of P onto m. The distance from P to { is then equal to the length of
the line segment AQ. Since AQP is a right triangle one has

AQ = AP cos?.

310



Here 6 is the angle between the normal 72 and the vector ﬁ One also has
7i-(p — @) = 7@-AP = | AP|| ||fi|| cos = AP ||| cos 6.

Hence we get

e —

_ n(p—a)
73]

dist(P, ¢)

0
Figure 14.15: Distance from a point P to a line ¢

This argument from a drawing contains a hidden assumption, namely that the point P lies on
the side of the line £ pointed to by the vector 7i. If this is not the case, so that 1 and A
point to opposite sides of ¢, then the angle between them exceeds 90°, i.e. # > 7/2. In this case
cosf < 0, and one has AQ = —AP cosf. the distance formula therefore has to be modified to

_7i-(p—ad)
172l
14.4.9 Defining equation of a plane

Just as we have seen how you can form the defining equation for a line in the plane from just
one point on the line and one normal vector to the line, you can also form the defining equation
for a plane in space, again knowing only one point on the plane, and a vector perpendicular to
it.
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x1

Figure 14.16: Equation for a plane from point A and normal 7.

If A is a point on some plane P and 71 is a vector perpendicular to P, then any other point X

lies on P if and only if AX 1 7. In other words, in terms of the position vectors @ and & of A
and X,
the point X is on P <= 7n-(Z —a) = 0.

Arguing just as in § 14.4.8 you find that the distance of a point X in space to the plane P is

dist(X, P) = i’W. (14.16)

Here the sign is “+” if X and the normal 72 are on the same side of the plane P; otherwise the
sign is “—7.

14.4.9.1 Example

Find the defining equation for the plane P through the point A(1,0,2) which is perpendicular
to the vector (%)

Solution: 'We know a point (A) and a normal vector i = (%) for P. Then any point X with
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H&H

coordinates (x1,x2, z3), or, with position vector & = é will lie on the plane P if and only if

)
(1
0 —
2
331—1

) =0
iL‘3—2
— l-(x1—-1)+2-(xz2)+1-(z3—2)=0
<~ 1+ 222+ 23—3=0.

— N = = N

x3

1 (3,0,0)
Figure 14.17: equation for a plane from point on plane and a normal to plane.

14.4.9.2 Example continued

Let P be the plane from the previous example. Which of the points P(0,0,1), Q(0,0,2),
R(—1,2,0) and S(—1,0,5) lie on P? Compute the distances from the points P,Q, R, S to the
plane P. Separate the points which do not lie on P into two groups of points which lie on the
same side of P.

Solution: We apply (14.16) to the position vectors p, g, 7, § of the points P, @, R, S. For each

calculation we need
)| =V12+224+12 = /6.

. . _ 1 . L _ .
The third component of the given normal n = (%) is positive, so n points “upwards.” There-

fore, if a point lies on the side of P pointed to by 72, we shall say that the point lies above the
plane.
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Pi=(8)p-a=(0) Aa@-a=1 (-1)+2:(0)+1(-1)=-2
w@-a 2 1
A e 3V

This quantity is negative, so P lies below P. Its distance to P is %\/6

~ 0y - - -1 S o
Qd=(8)p-a=(7g) m@E-a=1-(-1)+2-(0)+1:(0)=-1
i-(p — d 1 1
7] V6 6
This quantity is negative, so @ also lies below P. Its distance to P is %\/6.
- -2
R 7= ( 31),5—5: <32), AB—a) =1 (-2)+2-(2)+1-(=2) =0
np-a _,
7]
Thus R lies on the plane P, and its distance to P is of course 0.

si=(0)p-a=(9) @E-a=1-(-1)+2-(0)+1-(3) =2
ip-d 2 1
R~ V6 3ve

This quantity is positive, so S lies above P. Its distance to P is %\/6

We have found that P and @ lie below the plane, R lies on the plane, and S is above the plane.

14.4.9.3 Example continued

Where does the line through the points B(2,0,0) and C(0,1,2) intersect the plane P from
example 14.4.9.17

Solution:  Let £ be the line through B and C. We set up the parametric equation for £.
According to §14.2, (14.6) every point X on ¢ has position vector & given by

2 0-2 2 — 2t
F=b+t@—b=(0]+t{1-0|=] ¢ (14.17)
0 2-0 2

for some value of ¢.

The point X whose position vector & is given above lies on the plane P if & satisfies the defining
equation of the plane. In example 14.4.9.1 we found this defining equation. It was

n-(Z —ad) =0, ie. 1 +2x2+ 23 —3=0. (14.18)
So to find the point of intersection of ¢ and P you substitute the parametrization (14.17) in the
defining equation (14.18):

O0=x1+2x9+23—-3=(2—-2t)+2(t)+ (2t) —3 =2t — 1.
This implies t = %, and thus the intersection point has position vector
2-2t
(é—0b) = t =
2t

F=b+

N =
=N =

i.e. £ and P intersect at X (1, 3,1).
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14.5 Cross Product

14.5.1 Algebraic definition of the cross product

Here is the definition of the cross-product of two vectors. The definition looks a bit strange
and arbitrary at first sight — it really makes you wonder who thought of this. We will just put
up with that for now and explore the properties of the cross product. Later on we will see a
geometric interpretation of the cross product which will show that this particular definition is
really useful. We will also find a few tricks that will help you reproduce the formula without
memorizing it.

Definition 14.5.1. The “outer product” or “cross product” of two vectors is given by

ap b1 azbs — azbs
as | X bz = a3b1 — (Ilbg
as b3 a1by — azbq

Note that the cross-product of two vectors is again a vector!

14.5.1.1 Note

If you set b = G in the definition you find the following important fact: The cross product of
any vector with itself is the zero vector:

ax a=0 for any vector a.

14.5.1.2 Example

. 1\ » -2
Let a = (g), b= ( ! ) and compute the cross product of these vectors.

Solution:
1 -9 2:0-3-1 -3
axb=|2|x|1]|=]3(-2-1-0 =|-6
3 0 1-1-2-(=2) 5)

In terms of the standard basis vectors you can check the multiplication table. An easy way to
remember the multiplication table is to put the vectors 7?, 5 , k clockwise in a circle. Given two
of the three vectors their product is either plus or minus the remaining vector. To determine
the sign you step from the first vector to the second, to the third: if this makes you go clockwise
you have a plus sign, if you have to go counterclockwise, you get a minus.

P00k —f Ky
jl-k 0 i
K| j i 0
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The products of i _7 and k are all you I need to know to compute the cross product Given two
vectors @ and b write them as @ = alz + a2] + a3k and b = blz + b2] + bgk and multiply as
follows

—

G X b=(a1% + azj + ask) X (bii + by + bsk)

= a1ix (b1'Z—|— bQ.; + ng)
+azj x (bii + boj + bsk)
+agk x (b17?—|— sz + bgé)

= alblfxf + albgfxf + albg’zXE +
ashij X + ashey X j + ashyjxk +
a;;bﬂz X Z -+ angE X ; + a;;b:;’z X E

= alblﬁ + a1b2E - a1b3j
—agblk + CLQbQ(_j + agbgi +
azbij — asbyi + asbs0

:(agbg — agbg)’z-F ((lgbl — albg)j—F ((1152 — agbl)E
This is a useful way of remembering how to compute the cross product, particularly when many
of the components a; and b; are zero.
14.5.1.3 Example
Compute k x (pz+ qj—i— TE):

kx (pi+qj+rk) =p(kx 1)+ q(kx j)+r(kx k) =—qi +pj.
There is another way of remembering how to find @ x b. It involves the “triple product” and
determinants. See § 14.5.3.

14.5.2 Algebraic properties of the cross product

Unlike the dot product, the cross product of two vectors behaves much less like ordinary mul-
tiplication. To begin with, the product is not commutative — instead one has

dxb=—bxd for all vectors @ and b. (14.19)

This property is sometimes called “anti-commutative.”

Since the crossproduct of two vectors is again fm xie(itor you can ix(@xj) —ixk=—j
compute the cross product of three vectors a, b, ¢. You now AV S-S S
: -t A (ixi)xj=0xj=
have a choice: do you first multiply @ and b, or b and &, or @ “on - .
so “X” 18 not assoclative

and ¢? With numbers it makes no difference (e.g. 2x (3x5) =
2x15=30and (2x3) x5 =06 x5 = also 30) but with the cross product of vectors it does
matter: the cross product is not associative, i.e.

X (bx &) # (@ xb)xé for most vectors @, b, €.

The distributive law does hold, i.e.

Q
X
=
_l_
o
|
Ql
X
o
_|_
QL
X
oL
o
=)
Q.
=
+
By
Ql
Il
o

X
QL
+
ol
X
Ql
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is true for all vectors a, b, C.

Also, an associative law, where one of the factors is a number and the other two are vectors,
does hold. ILe.

t(@x b) = (td) x b= a x (tb)
holds for all vectors a, b and any number t. We were already using these properties when we
multiplied (a1% + asj + ask) X (b2 + bej + bsk) in the previous section.

Finally, the cross product is only defined for space vectors, not for plane vectors.

14.5.3 The triple product and determinants

Definition 14.5.2. The triple product of three given vectors a, 5, and € is defined to be
a-(bxdé).

In terms of the components of @, 5, and € one has

aq bacz — bsco
C_i(b X E) =las |- bgcl — b103
as bica — bacy

= a1bacz — arbsca + agbzer — agbicz + agbico — agbacy.

This quantity is called a determinant, and is written as follows

aq bl C1
as by co| = arbacg — aibgco + asbscy — agbics + asbico — agbacy (14.20)
as by c3

To compute the cross product of two given vectors @ and b you arrange their components in
the following determinant

i a1 by
axb= ; as ba| = (agbs — azba)i + (agby — a1b3)j + (a1be — azb k. (14.21)
E as b3

This is not a normal determinant since some of its entries are vectors, but if you ignore that
odd circumstance and simply compute the determinant according to the definition (14.20), you
get (14.21).

An important property of the triple product is that it is much more symmetric in the factors
a, b, ¢ than the notation a-(b x ¢) suggests.

Theorem 14.5.1. For any triple of vectors a, 5, ¢ one has

@(bx &) =b-(¢x a)=c&(a@axb),
and . . .
a(bx é)=—-b(axc)=—¢c(bxa).

¢) it changes its sign. If you

In other words, if you exchange two factors in the product c_i-(I; X
“rotate the factors,” i.e. if you replace @ by b, b by ¢ and € by a, the product doesn’t change

at all.
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14.5.4 Geometric description of the cross product

Theorem 14.5.2.

a
X
S
l_
o
Sy

QL
X
S

S

R

Proof. a

Figure 14.18: the cross product of two vectors

We use the triple product:
a-(@axb)=»b(axad)=0

since @ X @ = 0 for any vector @. It follows that @ X b is perpendicular to d.
Similarly, b-(@ x b) = @-(b x b) = 0 shows that @ x b is perpendicular to b. O

Theorem 14.5.3.
|@ x b = ||@]| ||b]| sin®

Proof. Emily? just slipped us a piece of paper with the following formula on it:

la x b]|* + (a-b)* = [|a|*|[b]|*. (14.22)

- b
After setting @ = (é%) and b = (2;) and diligently computing both sides we find that this
3

formula actually holds for any pair of vectors a, b! The (long) computation which implies this
identity will be presented in class (maybe).

If we assume that Lagrange’s identity holds then we get
@ x b = [|@[|*||b]]* — (a@-b)* = [|@]*|b]]* — [|a@l|*(|B]|* cos® & = [|&]|*[[b]|” sin* 6
since 1 — cos® @ = sin? . The theorem is proved. O

These two theorems almost allow you to construct the cross product of two vectors geometrically.
If @ and b are two vectors, then their cross product satisfies the following description:

1. If @ and b are parallel, then the angle 6 between them vanishes, and so their cross product
is the zero vector. Assume from here on that @ and b are not parallel.

2. @xbis perpendicular to both @ and b. In other words, since @ and b are not parallel,
they determine a plane, and their cross product is a vector perpendicular to this plane.

2Tt’s actually called Lagrange’s identity. Yes, the same Lagrange who found the formula for the
remainder term.
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3. the length of the cross product @ X b is ||| - ||b]| sin 6.

There are only two vectors that satisfy conditions 2 and 3: to determine which one of these
is the cross product you must apply the Right Hand Rule (screwdriver rule, corkscrew rule,
etc.) for a, b,ax b: if you turn a screw whose axis is perpendicular to @ and b in the direction
from a to I;, the screw moves in the direction of @ X b.

Alternatively, without seriously injuring yourself, you should be able to make a fist with your
right hand, and then stick out your thumb, index and middle fingers so that your thumb is a,
your index finger is b and your middle finger is @ x b. Only people with the most flexible joints
can do this with their left hand.

For a more in depth description of the cross product the student should watch (TTiube) by
3BluelBrown but be warned that you should really watch the whole series on linear algebra
for this one episode to make sense.

14.6 A few applications of the cross product

14.6.1 Area of a parallelogram

Let ABCD be a parallelogram. Its area is given by “height times base,” a formula which should
be familiar from high school geometry.

D C

height = ||AD||sin 6

A base = ||AB]| B
Figure 14.19: Area of a parallelogram, ||AB x AD]|.

If the angle between the sides AB and AD is 6, then the height of the parallelogram is Hzﬁ” sin @,
so that the area of ABCD is
area of ABCD = |AB| - |AD||sin§ = | AB x AD||. (14.23)

The area of the triangle ABD is of course half as much,

area of triangle ABD = 3 ||E X EH .

These formulae are valid even when the points A, B,C, and D are points in space. Of course
they must lie in one plane for otherwise ABC'D couldn’t be a parallelogram.
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14.6.2 Example

Let the points A(1,0,2), B(2,0,0), C(3,1,—1) and D(2,1,1) be given.
Show that ABCD is a parallelogram, and compute its area.

Solution: ABCD will be a parallelogram if and only if @ = 1@ + E In terms of the
position vectors @,b, ¢ and d of A, B, C, D this boils down to

é—a=((b—-a+(d—a), ie. d+é=b+d.

For our points we get

1 3 4 2 2
at+é=|0|+1 1 ]=11], b+d=(0]+[1]=|1
2 —1 1 0 1 1
So ABCD is indeed a parallelogram. Its area is the length of
2-1 2-1 1 1 -2
ABxAD=| o |x[1-0)={0]|x[-1]=[-1
0—2 1-2 -2 —1 -1

So the area of ABCD is \/(—2)2 +(—1)2 4 (-1)2 = /6.

14.6.3 Finding the normal to a plane

If you know two vectors @ and b which are parallel to a given plane P but not parallel to each
other, then you can find a normal vector for the plane P by computing

fi=axb.
We have just seen that the vector 7 must be perpendicular to both @ and B, and hence it is

perpendicular to the plane P.

This trick is especially useful when you have three points A, B and (', and you want to find the
defining equation for the plane P through these points. We will assume that the three points
do not all lie on one line, for otherwise there are many planes through A, B and C.

To find the defining equation we need one point on the plane (we have three of them), and a
normal vector to the plane. A normal vector can be obtained by computing the cross product
of two vectors parallel to the plane. Since E and B are both parallel to P, the vector
1 = AB X AC' is such a normal vector.

Thus the defining equation for the plane through three given points A, B and C is

(& — @) =0, with i=ABxAC = (b— @) x (¢— ).

14.6.4 Example

Find the defining equation of the plane P through the points A(2,—1,0), B(2,1,—1) and
C(—1,1,1). Find the intersections of P with the three coordinate axes, and find the distance
from the origin to P.
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Solution: We have

0 -3
1@ = 2 and 1@ = 2
-1 1
so that
0 -3 4
A=ABxAC=|[2|x|2]=]3
—1 1 6
is a normal to the plane. The defining equation for P is therefore
4 Tl — 2
O=mn-(Z—a)= (3] -[xz2+1
6 xr3 — 0

i.e.
4$1+3$2+6$3—5:0.

The plane intersects the x1 axis when 9 = x3 = 0 and hence 4x; — 5 = 0, i.e. in the point
(2,0,0). The intersections with the other two axes are (0, 2,0) and (0,0, 2).

The distance from any point with position vector & to P is given by

dist = iw,
7

. - e P ~ 0 .
so the distance from the origin (whose position vector is & = 0 = (8>) to P is

Q-7 2.4+ (—1)- ,
distanceoriginto(]’:ian_i +(-1)-3+0-6 5

_ - ~1.024- -
72| VAZ 132462 ¢m< )

14.6.5 Volume of a parallelepiped

G

D ‘
) base

=]

Figure 14.20: the volume of a parallelepiped
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A parallelepiped is a three dimensional body whose sides are parallelograms. For instance, a
cube is an example of a parallelepiped; a rectangular block (whose faces are rectangles, meeting
at right angles) is also a parallelepiped. Any parallelepiped has 8 vertices (corner points), 12

edges and 6 faces.

Let gggg be a parallelepiped. If we call one of the faces, say ABCD, the base of the paral-

lelepiped, then the other face EF'GH is parallel to the base. The height of the parallelepiped
is the distance from any point in EFGH to the base, e.g. to compute the height of g?gg one
could compute the distance from the point E (or F, or G, or H) to the plane through ABCD.

The volume of the parallelepiped gggg is given by the formula

ABCD .
Volume EFCGH = Area of base x height.

Since the base is a parallelogram we know its area is given by

Area of base ABCD = Hﬁ X EH

We also know that 17 = E X zﬁ is a vector perpendicular to the plane through ABCD,
i.e. perpendicular to the base of the parallelepiped. If we let the angle between the edge AF
and the normal 71 be 1, then the height of the parallelepiped is given by

height = HEH cos .

Therefore the triple product of ﬁ ) ﬁ, ﬁ is

ABCD )
Volume EFGH = height x Area of base

— |AE| cosy ||AB x AD|,

ie.

ABCD
Volume EFGH = E(ﬁ X :4_13)

14.7 Notation

In the next chapter we will be using vectors, so let’s take a minute to summarize the concepts
and notation we have been using.

Given a point in the plane, or in space you can form its position vector. So associated to a
point we have three different objects: the point, its position vector and its coordinates. here is
the notation we use for these:
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OBJECT

NOTATION

Coordinates of a point. ..

14.8 PROBLEMS

Upper case letters, A, B, etc.

Lowercase letters with an arrow
on top. The position vector O A of
the point A should be @, so that
letters match across changes from

upper to lower case.
The coordinates of the point A are

the same as the components of its
position vector @: we use lower
case letters with a subscript to in-
dicate which coordinate we have
in mind: (a1, as).

COMPUTING AND DRAWING VECTORS

934. Simplify the following

1 0
a=|-2|+3(1];
3 3

935. If @,b,& are as in the previous prob-
lem, then which of the following expressions
mean anything? Compute those expressions
that are well defined.

(i) @+b (i) b+¢& (ili) 7d
. -2 = . o -
(iv) b (v) b/c  (vi) |all+[b]
(vii) [Bl* (vii) b/ |
1 2
936. Let ad = -2 and b = -1
2 1
Compute:
1. la]l

2. 2a
3. ||2d||?
4. d@+5b
5.3i—b
1408
937. Let 4,9, be three given vectors, and
suppose

(a) Simplify p = a 3b — @ and § =
¢—2(u+a)

(b) Find numbers r, s, t such that rd@ + sb +
té = 4.

(¢) Find numbers k, I, m such that ka+ lb+
mcé = 1.

938. Prove the Algebraic Properties (14.2),
(14.3), (14.4), and (14.5) in section 14.1.4.

939. (a) Does there exist a number z such

()+()-6)

(b) Make a drawing of all points P whose
position vectors are given by

7= () )
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(c) Do there exist a numbers x and y such
N (1) Z (),
\2) V) T )
+408

940. Given points A(2,1) and B(—1,4) com-
pute the vector E Is AB a position vec-
tor? 1408

941. Given: points A(2,1), B(3,2), C(4,4)

and D(5,2). Is ABCD a parallelogram?
1408
942. Given: points A(0,2,1), B(0,3,2),

C(4,1,4) and D.
(a) If ABCD is a parallelogram, then what
are the coordinates of the point D?

(b) If ABDC' is a parallelogram, then what
are the coordinates of the point D? 7408

943. You are given three points in the plane:
A has coordinates (2,3), B has coordinates
(—1,2) and C has coordinates (4, —1).

(a) Compute the vectors xﬁ, ﬂ, /ﬁ, CT>4,
B? and C@ .
(b) Find the points P, @, R and S whose po-

—
sition vectors are xﬁ, BA, ﬁ, and B?,
respectively. hint: make a precise drawing.

944. Have a look at figure 14.21

—

(a) Draw the vectors 24 + %w, —%'B’ + w,
and %6 — 5w

(b) Find real numbers s,t such that sv +
tw = a.

(c) Find real numbers p, ¢ such that pd +
gw = b.

(d) Find real numbers k,l,m,n such that
¥ = ka + Ib, and w = ma + nw.

Figure 14.21: Drawing for problem 944
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PARAMETRIC EQUATIONS FOR A LINE

@)

Figure 14.22: Parametric equations for a line.

945. In the figure above draw the points
whose position vectors are given by &
a+tb-a)fort=0,1, %, %, —1,2. (as al-

s
ways, @ = OA, etc.)

946. In the figure above also draw the points
whose position vector are given by &
b+ s(a —b) for 3:0,1,%,%,—1,2.

947. (a) Find a parametric equation for
the line ¢ through the points A(3,0,1) and
B(2,1,2).

(b) Where does ¢ intersect the coordinate
planes? 1408

948. (a) Find a parametric equation for the
line which contains the two vectors

2 3
=3 |andb=| 2
1 3
€1
(b) The vector ¢ = | 1 | is on this line.
3
What is ¢?

+408

949. Consider a triangle ABC and let a, 5, é
be the position vectors of A, B, and C.

(a) Compute the position vector of the mid-
point P of the line segment BC. Also com-
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pute the position vectors of the midpoints @
of AC and R of AB. (Make a drawing.)

(b) Let M be the point on the line segment
AP which is twice as far from A as it is from
P. Find the position vector of M.

(c) Show that M also lies on the line seg-
ments BQ and CR.

1408
950. Let ABCD be a tetrahedron, and let

a, B, c, d be the position vectors of the points
A,B,C,D.

(i) Find position vectors of the midpoint
P of AB, the midpoint Q of CD and the
midpoint M of PQ.
(ii) Find position vectors of the midpoint
R of BC, the midpoint S of AD and the
midpoint N of RS.
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ORTHOGONAL DECOMPOSITION OF ONE VECTOR WITH

RESPECT TO ANOTHER

951. Given the vectors @ = <§> and b = (é)

/

find &//, at, b , l_)d_ for which

d=al +at, with a////g,aL gl 5,

and

b=b5 +5, with o/ ja, b L a

+409

952. Emily left her backpack on a hill, which
in some coordinate system happens to be
the line with equation 1221 4+ 5x9 = 130.

The force exerted by gravity on the back-
pack is fo = (_9,19). Decompose this
force into a part perpendicular to the hill,

and a part parallel to the hill.

THE DOT PRODUCT

954. (i) Simplify ||@ — b|)*.
(i) Simplify ||2@ — b]|>.
(iii) If @ has length 3, b has length 7 and

=

d-b = —2, then compute ||@+ b||, ||@ — b||
and ||2a@ — b||. 1409

955. Simplify (@ + b)-(@ — b).

956. Find the lengths of the sides, and the
angles in the triangle ABC whose vertices
are A(2,1), B(3,2), and C(1,4).

1409

957. Given: A(1,1), B(3,2) and a point C
which lies on the line with parametric equa-
tion ¢ = (9)+¢ (). If AABC is a right
triangle, then where is C7 (There are three
possible answers, depending on whether you
assume A, B or C'is the right angle.) 409

958. (i) Find the defining equation and a
normal vector 7t for the line ¢ which is the

+409

953. An eraser is lying on the plane P with
equation z1 + 3x2 + 3 = 6. Gravity pulls
the eraser down, and exerts a force given by

0
ferav=1|{ O
—mg

(a) Find a normal 73 for the plane P.

(b) Decompose the force f into a part per-
pendicular to the plane P and a part per-
pendicular to 7.

graph of y =1+ %m 1410

(if) What is the distance from the origin to
07 1410

(iii) Answer the same two questions for the
line m which is the graph of y = 2 — 3x.
1410

(iv) What is the angle between ¢ and m?
+410

959. Let ¢/ and m be the lines with
parametrizations

=)t
RORE

Where do they intersect, and find the angle
between ¢ and m.

960. Let ¢/ and m be the lines with
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parametrizations

1
L:Z2=11|+t|2],
—4 0
0 -2
m: =11 ]+s| 0
-1 3

Do ¢ and m intersect? Find the angle be-
tween £ and m.

961. Let ¢ and m be the lines with
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parametrizations
2 1
L:Z=a|l+t|2],
)
0 -2
m: =1 |+s| O
-1 3

Here « is some unknown number.

If it is known that the lines ¢ and m inter-
sect, what can you say about a?



THE CROSS PRODUCT

962. Compute the following cross products

3 3
(i)1x2

(if) —71 (71

1
(iif) 0 x |1
0

(iv) 1 x (\/2
0 0

963. Compute the following cross products
(i) ix (i+7)
(ii) (V2i+3)x V25
(iii) (20 +k)x (7 — k)
(iv) (cos @i + sinOk) X (sin 6z — cos Ok)
964. (i) Simplify (@ + b) x (@ + b). 1410

(ii) Simplify (@ — b) X (@ — b).

(iif) Simplify (@ + b) x (@ —b). 1410
965. True or False: If @xb=2¢&xband

b#Othenazé’? 1410
966. Given A(2,0,0), B(0,0,2) and C(2,2,2).

Let P be the plane through A, B and C.

(i) Find a normal vector for P. {411

(if) Find a defining equation for P. {411

(iii) What is the distance from D(0,2,0)
to P? What is the distance from the origin
0(0,0,0) to P? T411
(iv) Do D and O lie on the same side of P?
411

(v) Find the area of the triangle ABC.
411

(vi) Where does the plane P intersect the

-,

three coordinate axes? 1411

967. (i) Does D(2,1,3) lie on the plane
P through the points A(—1,0,0), B(0,2,1)
and C(0,3,0)? T411
(if) The point E(1,1, «) lies on P. What is
a? t411

968. Given points A(1,—1,1), B(2,0,1) and
C(1,2,0).

(i) Where is the point D which makes
ABCD into a parallelogram? 1411

(if) What is the area of the parallelogram
ABCD? 7411

(iii) Find a defining equation for the plane
P containing the parallelogram ABCD.
1411

(iv) Where does P intersect the coordinate
axes? T411

969. Given points A(1,0,0), B(0,2,0) and
D(—1,0,1) and E(0,0,2).
ABCD

(i) If B = gpoy is a parallelepiped, then
where are the points C, F, G and H? 7412

(if) Find the area of the base ABCD of 3.
412

(iii) Find the height of . 1412
(iv) Find the volume of . 7412
g H
T G
____________ > B
A
B e

970. Let gggg be the cube with A at the
origin, B(1,0,0), D(0,1,0) and E(0,0,1).

(i) Find the coordinates of all the points A,
B,C,D,E,F,G,H.

(ii) Find the position vectors of the mid-
points of the line segments AG, BH, CE
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and DF. Make a drawing of the cube with
these line segments.

(iii) Find the defining equation for the
plane BDE. Do the same for the plane
CFH. Show that these planes are parallel.

(iv) Find the parametric equation for the

329

line through AG.

(v) Where do the planes BDE and CFH
intersect the line AG?

(vi) Find the angle between the planes
BDE and BGH.

(vii) Find the angle between the planes
BDFE and BCH. Draw these planes.



Chapter 15

Vector Functions and Parametrized
Curves

15.1 Parametric Curves

Definition 15.1.1. A vector function f of one variable is a function of one real variable, whose
values f(t) are vectors.

In other words for any value of ¢ (from a domain of allowed values, usually an interval) the
vector function f produces a vector f (t). Write f in components:

7 S1(t)
F(t) = < |
Q fa(t)
The components of a vector function f of ¢t are themselves functions of ¢. They are ordinary
functions of a single variable. An example of a vector function is

- (L), - (25 - ()

(just to mention one.)

—

Definition 15.1.2. A parametric curve is a vector function & = &(t) of one real variable ¢.
The variable ¢ is called the parameter.

Synonyms: “Parametrized curve,” or “parametrization,” or “vector function (of one vari-

able).”

Logically speaking a parametrized curve is the same thing as a vector function. The name
“parametrized curve” is used to remind you of a very natural and common interpretation of the
concept “parametric curve.” In this interpretation a vector function, or parametric curve &(t)
describes the motion of a point in the plane or space. Here ¢ stands for time, and Z(t) is the
position vector at time t of the moving point.
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t=0.0

Figure 15.1: A picture of a vector function.

Instead of writing a parametrized curve as a vector function, one sometimes specifies the two
(or three) components of the curve. Thus one will say that a parametric curve is given by

x1 =x1(t), x2=2x2(t), (and x3 = x3(t) if we have a space curve).

15.1.1 Examples of parametrized curves

15.1.2 An example of Rectilinear Motion.

() = <21j;t> . (15.1)

The components of this vector function are

Here’s a parametric curve:

xl(t) =1+t .’L‘Q(t) =2+ 3t. (15.2)

Both components are linear functions of time (i.e. the parameter t), so every time ¢ increases
by an amount At (every time At seconds go by) the first component increases by At, and the
x9 component increases by 3At. So the point at &(t) moves horizontally to the left with speed
1, and it moves vertically upwards with speed 3.

>

Figure 15.2: Rectilinear motion
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Which curve is traced out by this vector function? In this example we can find out by
eliminating the parameter, i.e. solve one of the two equations (15.2) for ¢, and substitute the
value of ¢ you find in the other equation. Here you can solve z1 = 1 + t for ¢, with result
t = 21 — 1. From there you find that

1‘2:2+3t:2+3<1‘1—1):31‘1—1.

So for any ¢ the vector Z(t) is the position vector of a point on the line 9 = 3z; — 1 (or, if you
prefer the old fashioned x,y coordinates, y = 3z — 1).

Conclusion: This particular parametric curve traces out a straight line with equation zo =
3z — 1, going from left to right.

15.1.3 Rectilinear Motion in general.

This example generalizes the previous example. The parametric equation for a straight line
from the previous chapter
Z(t) = a+ tv,

is a parametric curve. We had ¥ = b—adin §14.2. At time t = 0 the object is at the point with
position vector @, and every second (unit of time) the object translates by ¥. The vector ¥ is
the velocity vector of this motion.

In the first example we had @ = (1), and ¥ = (3).

15.1.4 Going back and forth on a straight line.

Consider
Z(t) = a + sin(t)v.

At each moment in time the object whose motion is described by this parametric curve finds
itself on the straight line ¢ with parametric equation & = @ + s(b — @), where b = @ + v.

However, instead of moving along the line from one end to the other, the point at &(t) keeps
moving back and forth along ¢ between @ + v and a@ — .

15.1.5 Motion along a graph.

Let y = f(x) be some function of one variable (defined for x in some interval) and consider the

parametric curve given by
- t 2 -
x(t) = =tt+ f(¥)3.

At any moment in time the point at Z(¢) has z; coordinate equal to ¢, and xo = f(t) = f(z1),
since x; = t. So this parametric curve describes motion on the graph of y = f(z) in which the
horizontal coordinate increases at a constant rate.
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15.1.6 The standard parametrization of a circle.

w0~ (39)

The two components of this parametrization are

Consider the parametric curve

x1(0) = cosl, x2(0) = sind,

and they satisfy
z1(0)? + 22(0)? = cos? 0 + sin? 0 = 1,

so that Z(0) always points at a point on the unit circle.

Figure 15.3: parametrization of a circle

As 0 increases from —oo to +oo the point will rotate through the circle, going around infinitely
often. Note that the point runs through the circle in the counterclockwise direction, which
is the mathematician’s favorite way of running around in circles.

15.1.7 The Cycloid.

The Free Ferris Wheel Foundation is an organization whose goal is to empower fairground ferris
wheels to roam freely and thus realize their potential. With blatant disregard for the public,
members of the F2WF will clandestinely unhinge ferris wheels, thereby setting them free to roll
throughout the fairground and surroundings.

Suppose we were to step into the bottom of a ferris wheel at the moment of its liberation: what
would happen? Where would the wheel carry us? Let our position be the point X, and let
its position vector at time ¢ be &(t). The parametric curve &(¢) which describes our motion is
called the cycloid.
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X2

X

Figure 15.4: constructing a cycloid

In this example we are given a description of a motion, but no formula for the parametrization
Z(t). We will have to derive this formula ourselves.

o)
C
7
X B
i
O A !

Figure 15.5: derivation of cycloid parameterization

The key to finding ®(¢) is the fact that the arc AX on the wheel is exactly as long as the line
segment OA on the ground (i.e. the z; axis). The length of the arc AX is exactly the angle 6
(“arc = radius times angle in radians”), so the 1 coordinate of A and hence the center C' of
the circle is 6. To find X consider the right triangle BC' X. Its hypothenuse is the radius of the
circle, i.e. CX has length 1. The angle at C is @, and therefore you get

BX =sin#, BC = cos ¥,

and
r1=0A—-BX =0 —sind, x9 = AC — BC =1 — cos¥.

So the parametric curve defined in the beginning of this example is

oo [0 —sinf
Z(0) = <1 —cosG) '

Here the angle 6 is the parameter, and we can let it run from # = —oo to 6 = cc.
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15.1.8 A three dimensional example: the Helix.

Consider the vector function

cos b
Z(0) = | sinf
ab

where a > 0 is some constant.

Figure 15.6: A Helix in three dimensions.

If you ignore the x3 component of this vector function you get the parametrization of the circle
from example 15.1.6. So as the parameter # runs from —oco to 400, the x1, x9 part of Z(6) runs
around on the unit circle infinitely often. While this happens the vertical component, i.e. x3(f)
increases steadily from —oo to oo at a rate of a units per second.

15.2 The derivative of a vector function

If Z(t) is a vector function, then we define its derivative to be
dg . Z(t+h)—Z(t)
_,/
t = — = 1 .
z) dt — hso h
This definition looks very much like the definition of the derivative of a function of a single

variable, but for it to make sense in the context of vector functions we have to explain what the
limit of a vector function is.

By definition, for a vector function f(t) = (f ! (t)> one has

fa(t)
i F(8) = Lim fit)\  (limy_sq f1(t)
i £() = im (fz(t)> a (hmt—m fQ(t)>

In other words, to compute the limit of a vector function you just compute the limits of its
components (that will be our definition.)

Let’s look at the definition of the velocity vector again. Since

B+h) =3 1 [ (n(+h)) _ (210)
e

zo(t + h})L — x2(t)
h
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we have

—/ — 1
Z(t) B0 h
lim xl(t + h) - :L‘l(t)
_ [ =0 h
i 20t h) — z2(1)
h—0 h

- (o)

So: To compute the derivative of a vector function you must differentiate its components.

15.2.1 Example

Compute the derivative of

- cost ~ t—sint
Z(t) = <sint> and of - (t) = <1 — cos t) '

:E"(t)—g cost) [—sint
~dt \sint) \ cost
d [(t—sint 1 —cost
—/ _ _
y(t)_dt <1—cost) ( sint )

15.3 Higher derivatives and product rules

Solution:

If you differentiate a vector function &(t) you get another vector function, namely Z'(t), and
you can try to differentiate that vector function again. If you succeed, the result is called the
second derivative of &(¢). All this is very similar to how the second (and higher) derivative of
ordinary functions. One even uses the same notation:!
) - S0 _ B2 _ (400
dt de2 2 (t)

15.3.1 Example

Compute the second derivative of

o cost . t —sint
2(t) = <sint> and of - (t) = <1 — o8 t) '
Solution: In example 15.2.1 we already found the first derivatives, so you can use those. You
find
d (—sint —cost
=/ _ —
#t) = dt < cost > <—sint>
d [1—cost sint
7 _ _
v = dt < sint ) (cos t> '
—//

INot every function has a derivative, so it may happen that you can find &'(t) but not &" (t)
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Note that our standard parametrization @(t) of the circle satisfies
2'(t) = —Z(t).

After defining the derivative for ordinary function of a single variable one quickly introduces
the various rules (sum, product, quotient, chain rules) which make it possible to compute
derivatives without ever actually having to use the limit-of-difference-quotient-definition. For
vector functions there are similar rules which also turn out to be useful.

The Sum Rule holds. It says that if &(t) and %(¢) are differentiable? vector functions, then so
is Z(t) = Z(t) £ y(t), and one has

The Product Rule also holds, but it is more complicated, because there are several different
forms of multiplication when you have vector functions. The following three versions all hold:
If £(t) and 4(t) are differentiable vector functions and f(t) is an ordinary differentiable function,
then

d f(g)ti(t) ‘o diit) Ld ];Sft)i 0
dE(t) x g(t) _ dy(¢) | d&(t)
a X g g xul)

I hope these formulae look plausible because they look like the old fashioned product rule, but
even if they do, you still have to prove them before you can accept their validity. I will prove
one of these in lecture. You will do some more as an exercise.

As an example of how these properties get used, consider this theorem:

Theorem 15.3.1. Let f(t) be a vector function of constant length (i.c. ||f(¢)] is constant.)
Then F (t) L F(t).

Proof. 1f || f| is constant, then so is f(¢)-f(t) = || f(¢)||>. the derivative of a constant function
is zero, so

0= %(Hf(t)HQ) = %(Ilf(t)ll NF®I) = Qf(t)‘dﬁt)‘

So we see that ]_‘:f/ = 0 which means that f/ L f O

15.4 Interpretation of the velocity vector

Let &(t) be some vector function and interpret it as describing the motion of some point in the
plane (or space). At time t the point has position vector Z(t); a little later, more precisely, h
seconds later the point has position vector &(t + h). Its displacement is the difference vector

E(t + h) — B (t).

2A vector function is differentiable if its derivative actually exists, i.e. if all its components are
differentiable.
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Z(t+ h) — Z(t)

O R+ h)

x

C

Figure 15.7: The vector velocity of a motion in the plane

Its average velocity vector between times ¢ and t + h is

displacement vector — Z(t + h) — &(t)

time lapse N h

If the average velocity between times ¢ and ¢t + h converges to one definite vector as h — 0, then
this limit is a reasonable candidate for the wvelocity vector at time t of the parametric curve
Z(t).
Being a vector, the velocity vector has both magnitude and direction. The length of the velocity
vector is called the speed of the parametric curve. We use the following notation: we always
write

for the velocity vector, and
u(t) = [l5(t)]] = |2 (1)]]
for its length, i.e. the speed.

The speed v is always a nonnegative number; the velocity is always a vector.

15.4.1 Velocity of linear motion.

If Z(t) = @ + tJ, as in examples 15.1.2 and 15.1.3, then
oo [a1+tug
z(t) = <CL2 + tv2>

#(t) = <Z;> =%

So when you represent a line by a parametric equation #(t) = @+ td, the vector ¥ is the velocity
vector. The length of U is the speed of the motion.

so that

In example 15.1.2 we had ¥ = (1), so the speed with which the point at &(t) = (fj;t) traces

out the line is v = ||¥|| = V12 4 32 = /10.
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15.4.2 Motion on a circle.

- Rcoswt
t) = . .
Z(t) (R smwt)
The point X at Z(¢) is on the circle centered at the origin with radius R. The segment from

the origin to X makes an angle wt with the xi-axis; this angle clearly increases at a constant
rate of w radians per second.

Consider the parametrization

X2

Sl

Figure 15.8: motion on a circle

The velocity vector of this motion is
Lo oy [ —wRsinwt) —sinwt
olt) =2 (1) = ( wR coswt ) B WR( cos wt ) '
This vector is not constant. however, if you calculate the speed of the point X, you find

R . sinwt \ ||
v=|9(t)]| =wR H <coswt> H =wR.

So while the direction of the velocity vector ¥(t) is changing all the time, its magnitude is
constant. In this parametrization the point X moves along the circle with constant speed
v=wR.

15.4.3 Velocity of the cycloid.

Think of the dot X on the wheel in the cycloid example 15.1.7. We know its position vector

and velocity at time ¢
S [ t—sint 2 (1 —cost
z(t) = <1—cost>’ z(t) = < sint >
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The speed with which X traces out the cycloid is
v = &)
= /(1 — cost)? + (sint)2
=1 —2cost+ cos?t + sin®¢
= /2(1 — cost).

You can use the double angle formula cos 2o = 1 — 2sin® a with a = % to simplify this to

=2

D[+

v = y/4sin?

The speed of the point X on the cycloid is therefore always between 0 and 2. At times ¢t = 0
and other multiples of 27 we have &'(t) = 0. At these times the point X has come to a stop.
At times t = 7 + 2km one has v = 2 and &' (t) = (2), i.e. the point X is moving horizontally to
the right with speed 2.

15.5 Acceleration and Force

Just as the derivative @ (t) of a parametric curve can be interpreted as the velocity vector G (t),
the derivative of the velocity vector measures the rate of change with time of the velocity and
is called the acceleration of the motion. The usual notation is

do(t)  d*@
dt de2

at) =v'(t) = = 2'(t).

Sir Isaac NEWTON’s law relating force and acceleration via the formula “F = ma” has a vector
version. If an object’s motion is given by a pammetmzed curve &(t) then this motion is the result
of a force F being exerted on the object. The force F s given by

= d’@
F = (_1: = _—
m M
where m is the mass of the object.

Somehow it is always assumed that the mass m is a positive number.

15.5.1 How does an object move if no forces act on it?

If F(t) = 0 at all times, then, assuming m # 0 it follows from F' = ma that @(t) = 0. Since
@(t) = ¥'(t) you conclude that the velocity vector %(¢) must be constant, i.e. that there is some

fixed vector ¥ such that
&' (t) = 6(t) = ¥ for all t.

This implies that
Z(t) = Z(0) + tv.

So if no force acts on an object, then it will move with constant velocity vector along a straight
line (said Newton — Archimedes long before him thought that the object would slow down and
come to a complete stop unless there were a force to keep it going.)

340



15.5.2 Compute the forces acting on a point on a circle.

Consider an object moving with constant angular velocity w on a circle of radius R, i.e. consider

oo [(Rcoswt) coswt
() = (Rsinwt) =R (sinwt) ‘

Then its velocity and acceleration vectors are

o —sin wt
9(t) =wh < cos wt )

Z(t) as in example 15.4.2,

and

d(t) = &(t) = w’R (— cos wt)

— sinwt
— _ 2R <c9s wt)
sin wt

Since both (gfrfg) and (_Ccs)fleg) are unit vectors, we see that the velocity vector changes its

direction but not its size: at all times you have v = ||¥]| = wR. The acceleration also keeps
changing its direction, but its magnitude is always

v 2

2 v
= 2
a=|a :wR:(—) R=—.
Jal 2) R="
The force which must be acting on the object to make it go through this motion is

N ~ t
F =md=-mw’R <C.Osw > .
sin wt

X2

.l

Figure 15.9: force driving motion in a circle

To conclude this example note that you can write this force as
F = —mw?Z(t)

which tells you which way the force is directed: towards the center of the circle.
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15.5.3 How does it feel, to be on the Ferris wheel?

In other words, which force acts on us if we get carried away by a “liberated ferris wheel,” as
in example 15.1.77

T2

T

Figure 15.10: force for cycloid motion

Well, you get pushed around by a force ﬁ’, which according to Newton is given by F = ma,
where m is your mass and @ is your acceleration, which we now compute:

at) = v (t)

_d (1—cost
~dt \ sint
_ (sint
~ \cost/’
This is a unit vector: the force that’s pushing you around is constantly changing its direction

but its strength stays the same. If you remember that ¢ is the angle ZAC X you see that the
force F' is always pointed at the center of the wheel: its direction is given by the vector XC.

15.6 Tangents and the unit tangent vector

Here we address the problem of finding the tangent line at a point on a parametric curve.

Let &(t) be a parametric curve, and let’s try to find the tangent line at a particular point X,
with position vector &(tp) on this curve. We follow the same strategy as in the calculus: pick a
point X on the curve near Xy, draw the line through Xy and X; and let X, — Xj.

The line through two points on a curve is often called a secant to the curve. So we are going
to construct a tangent to the curve as a limit of secants.
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The point X has position vector &(tp), the point X}, is at @(to + h). Consider the line ¢,

parametrized by

(to + h) — @ (to)
h Y

in which s is the parameter we use to parametrize the line.

(15.3)

Y(s:h) = 2(to) + s

¢ gh,

Figure 15.11: secant becomes tangent in the limit as h — 0

The line ¢;, contains both Xy (set s = 0) and X}, (set s = h), so it is the line through X and
Xy}, i.e. a secant to the curve.

Now we let h — 0, which gives

(to + h) — E(to)
h

N def |. _ N .
=] “h) = Z(t ]
y(s) = lim g(s; h) = &(to) + s lim

= B(to) + s (to),

In other words, the tangent line to the curve &(t) at the point with position vector &(ty) has
parametric equation
§(s) = &(to) + s&' (o),

and the vector & (tg) = @(tg) is parallel to the tangent line £. Because of this one calls the
vector & (tg) a tangent vector to the curve. Any multiple AZ'(¢o) with A # 0 is still parallel
to the tangent line ¢ and is therefore also called a tangent vector.

A tangent vector of length 1 is called a unit tangent vector. If &'(ty) # 0 then there are
exactly two unit tangent vectors. They are

—

T(to) = +

15.6.1 Example

Find Tangent line, and unit tangent vector at #(1), where &(t) is the parametric curve given

by
() = ( tg), so that & (£) — (2175) .
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-

Figure 15.12: example: finding the tangent

Solution: For t =1 we have Z'(1) = (}), so the tangent line has parametric equation

i) =3+ 570 = (1) 45 (3) = (15,)

In components one could write this as y1(s) = 1+ s, y2(s) = 1 + 2s. After eliminating s you
find that on the tangent line one has

yr=14+2s=142(y; — 1) =2y; — 1.

The vector & (1) = () is a tangent vector to the parabola at #(1). To get a unit tangent vector
we normalize this vector to have length one, i.e. we divide i by its length. Thus

70 = e (o) - (173

is a unit tangent vector. There is another unit tangent vector, namely
- 1 /5
~T(1)=—-{3 ) .
m=- (1Y

15.6.2 Tangent line and unit tangent vector to Circle.

In example 15.1.6 and 15.2.1 we had parametrized the circle and found the velocity vector of

this parametrization,
o [cosf g [ —sind
z(0) = (sin&) ’ z(0) = ( cos 6 > ’



If we pick a particular value of 6 then the tangent line to the circle at Z(fp) has parametric
equation

i(s) = #(00) +s:§’(90) _ <c089+3s1n9>

sinf — scos @

This equation completely describes the tangent line, but you can try to write it in a more
familiar form as a graph
Y2 = myi +n.

To do this you have to eliminate the parameter s from the parametric equations
y1 = cosf + ssin b, Yo = sinf — scos 6.

When sin 6 # 0 you can solve y; = cosf + ssin 8 for s, with result

Y1 —cost
~ sinf
So on the tangent line you have

—cos
Yo =sinf — scosf =sinf — COSQw
sin 6
which after a little algebra (add fractions and use sin? @ + cos? @ = 1) turns out to be the same
as

1
yo = —cotf y; + —.
sin 0

Figure 15.13: tangent to the unit circle at angle 0

The tangent line therefore hits the vertical axis when y; = 0, at height n = 1/sin, and it has
slope m = —cot 6.

For this example you could have found the tangent line without using any calculus by studying
the drawing above carefully.

Finally, let’s find a unit tangent vector. A unit tangent is a multiple of & () whose length is

one. But the vector & (6) = (_C(S)isnee) already has length one, so the two possible unit vectors

T(0) = #(0) = (‘Sm9> and — T(6) = < sin 0 >

cosf —cosf

are
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15.7 Sketching a parametric curve

For a given parametric curve, like

E(t) = G;_i) (15.4)

you might want to know what the curve looks like. The most straightforward way of getting a
picture is to compute z1(t) and z2(t) for as many values of ¢ as you feel like, and then plotting
the computed points. This computation is the kind of repetitive task that computers are very
good at, and there are many software packages and graphing calculators that will attempt to
do the computation and drawing for you.

If the vector function has a constant whose value is not (completely) known, e.g. if we wanted
to graph the parametric curve

42
Z(t) = (327& _tt3> (a is a constant) (15.5)

then plugging parameter values and plotting the points becomes harder, since the unknown
constant a shows up in the computed points.

On a graphing calculator you would have to choose different values of a and see what kind of
pictures you get (you would expect different pictures for different values of a).

In this section we will use the information stored in the derivative & (t) to create a rough sketch
of the graph by hand.

Let’s do the specific curve (15.4) first. The derivative (or velocity vector) is

70 -(, %) = {00 Z s

We see that 2 () changes its sign at ¢ = 0, while 24(¢) = 2(1 —¢)(1 + t) changes its sign twice,

at t = —1 and then at ¢ = +1. You can summarize this in a drawing:
e
: ® : x1
- +++++++ -
— 1 =0 (=1

Figure 15.14: a diagram to help you sketch a parametric curve

The arrows indicate the wind direction of the velocity vector &'(t) for the various values of t.

For instance, when ¢ < —1 you have z(¢) > 0 and 2(t) < 0, so that the vector
=y (T o+
#(0 = (30) = ()
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points in the direction “South-East.” You see that there are three special ¢ values at which
#'(t) is either purely horizontal or vertical. Let’s compute &(¢) at those values

=1 (1) = (%) & (-1)=(3)
t=0 #(0) = (1) Z(0) = (9)
t=1 (1) = (9) (1) = ()

x1

(~1)

Figure 15.15: example: sketching a parametric curve

15.8 Length of a curve

If you have a parametric curve &(t), a < t < b, then there is a formula for the length of the
curve it traces out. We’ll go through a brief derivation of this formula before stating it.

To compute the length of the curve {Z(t) : a < t < b} we divide it into lots of short pieces.
If the pieces are short enough they will be almost straight line segments, and we know how
do compute the length of a line segment. After computing the lengths of all the short line
segments, you add them to get an approximation to the length of the curve. As you divide the
curve into finer & finer pieces this approximation should get better & better. You can smell an
integral in this description of what’s coming. Here are some more details:

Divide the parameter interval into N pieces,
a=1ty) <t <ta < ---<itn_1 <ty =b.

Then we approximate the curve by the polygon with vertices at Z(t9) = Z(a), Z(t1), ..., E(tn).
The distance between to consecutive points at #(¢;—1) and &(t;) on this polygon is

[Z(t;) — Z(ti—1)]| -

Since we are going to take t;_1 — t; “very small,” we can use the derivative to approximate the
distance by

Z(t;) — Z(t;—1 .
M(ti —ti1) A& (&) (6 — tiz1),
t; —ti—1
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so that
‘|£(tz) - f(ti—l)” =~ Ha_f/(tz)H (ti — ti—l)-

Now add all these distances and you get

N b
Length polygon =~ Z Hzﬁl(tz)H (ti - ti—l) ~ / Hf/(t)H dt.

i=1 =@
This is our formula for the length of a curve.

Just in case you think this was a proof, it isn’t! First, we have used the symbol ~ which stands
for “approximately equal,” and we said “very small” in quotation marks, so there are several
places where the preceding discussion is vague. But most of all, we can’t prove that this integral
is the length of the curve, since we don’t have a definition of “the length of a curve.” This is
an opportunity, since it leaves us free to adopt the formula we found as our formal definition of
the length of a curve. Here goes:

Definition 15.8.1. If {Z(¢) : a <t < b} is a parametric curve, then its length is given by

b
Length = / |&(0)|] at
a
provided the derivative &'(t) exists, and provided ||#'(¢)| is a Riemann-integrable function.

In this course we will not worry too much about the two caveats about differentiability and
integrability at the end of the definition.

15.8.1 Length of a line segment.

How long is the line segment AB connecting two points A(a1,a2) and B(by,be)?

Solution: Parametrize the segment by
Bt)=da+tb—a), (0<t<1).
Then
I’ ()]l = [1b -l
and thus . .
Length(AB) :/ & (¢)]| dt :/ 16—l dt = ||b—d .
0 0

In other words, the length of the line segment AB is the distance between the two points A and
B. It looks like we already knew this, but no, we didn’t: what this example shows is that the
length of the line segment AB as defined in definition 15.8.1 is the distance between the points
A and B. So definition 15.8.1 gives the right answer in this example. If we had found anything
else in this example we would have had to change the definition.
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15.8.2 Perimeter of a circle of radius R.

What is the length of the circle of radius R centered at the origin? This is another example
where we know the answer in advance. The following computation should give us 27 R or else
there’s something wrong with definition 15.8.1.

We parametrize the circle as follows:
#(t) = Rcos i + Rsinfj, (0 <6 < 2m).

Then

#'(0) = —Rsinfi + Rcos0j, and |Z'(0)| = VR2sin?0 + R? cos? 0 = R.
The length of this circle is therefore

2m
Length of circle = / Rd# = 27 R.
0

Fortunately we don’t have to fix the definition!

And now the bad news: The integral in the definition of the length looks innocent enough
and hasn’t caused us any problems in the two examples we have done so far. It is however a
reliable source of very difficult integrals. To see why, you must write the integral in terms of
the components x(t), z2(t) of Z(t). Since

=2 ‘T, (t) =2 / /
#(t) = (:L«é(t)) and thus ||&'(£)]| = \/2) ()2 + 24(t)?

the length of the curve parametrized by {Z(t) : a <t < b} is

b
Length — / S (1) + ()2 dt.

For most choices of x1(t), x2(t) the sum of squares under the square root cannot be simplified,
and, at best, leads to a difficult integral, but more often to an impossible integral.

But, chin up, sometimes, as if by a miracle, the two squares add up to an expression whose
square root can be simplified, and the integral is actually not too bad. Here is an example:

15.8.3 Length of the Cycloid.

After getting in at the bottom of a liberated ferris wheel we are propelled through the air along
the cycloid whose parametrization is given in example 15.1.7,

oo [0 —sin®

2(0) = <1 - cos@) '
Solution: Compute & (0) and you find

- 1 —cosf

#(0) = < sin 0 )

12"(0)]| = /(1 — cos )2 + (sin )2 = v/2 — 2 cos .

How long is one arc of the Cycloid?

so that
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This doesn’t look promising (this is the function we must integrate!), but just as in example
15.4.3 we can put the double angle formula cos = 1 — 2sin? g to our advantage:

mezﬂ_mwzﬁm%ZQ

We are concerned with only one arc of the Cycloid, so we have 0 < 6 < 2w, which implies
0< g < 7, which in turn tells us that Sing > 0 for all & we are considering. Therefore the
length of one arc of the Cycloid is

: «9’
sin —| .
2

27
Length — / 12(0)]| 49
0

27

:/ 5
0
21 0

= sin — dé
[ s

.0
st‘ do

To visualize this answer: the height of the cycloid is 2 (twice the radius of the circle), so the
length of one arc of the Cycloid is four times its height (Look at the drawing on page 333.)

For some light relief the reader should watch this Youl D) by Think Twice for a geometric
derivation of a formula for the area under a cycloid.

15.9 The arclength function

If you have a parametric curve &(t) and you pick a particular point on this curve, say, the point
corresponding to parameter value g, then one defines the arclength function (starting at t)
to be

s(t) = t & (7)|| dr (15.6)

Thus s(t) is the length of the curve segment {Z(7) : tg < 7 < t}. (7 is a dummy variable.)

If you interpret the parametric curve &(t) as a description of the motion of some object, then
the length s(t) of the curve {&(7) : t9g < 7 < t} is the distance traveled by the object since time
to.

If you differentiate the distance traveled with respect to time you should get the speed, and
indeed, by the FUNDAMENTAL THEOREM OF CALCULUS one has

S0 =3 [ 18O =120l

which we had called the speed v(t) in § 15.4.
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15.10 Graphs in Cartesian and in Polar Coordinates

Cartesian graphs. Most of calculus deals with a particular kind of curve, namely, the graph
of a function, “y = f(z)”. You can regard such a curve as a special kind of parametric curve,

where the parametrization is
o t
x(t) =
0= (sto)

and we switch notation from “(z,y)” to “(z1,z2).”

For this special case the velocity vector is always given by

F) = (f’l(t)) ’

v(t) = & (O] = V1+ (1)

and the length of the segment between ¢t = a and t = b is

b
Length = / V14 f(t)?dt.

the speed is

Polar graphs. Instead of choosing Cartesian coordinates (x1,x2) one can consider so-called
Polar Coordinates in the plane. We have seen these before in the section on complex numbers:
to specify the location of a point in the plane you can give its x1, 9 coordinates, but you could
also give the absolute value and argument of the complex number z1 + izy (see §12.2.) Or, to
say it without mentioning complex numbers, you can say where a point P in the plane is by
saying (1) how far it is from the origin, and (2) how large the angle between the line segment
OP and a fixed half line (usually the positive x-axis) is.

X2

X1

Figure 15.16: polar coordinates

The Cartesian coordinates of a point with polar coordinates (r, 6) are
x1 =rcosb, xo =1rsinb, (15.7)

or, in our older notation,
x =rcoséd, y =rsinf.
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These are the same formulas as in §12.2, where we had “ r = |z| and § = arg z.”

Often a curve is given as a graph in polar coordinates, i.e. for each angle 6 there is one point
(X) on the curve, and its distance r to the origin is some function f(#) of the angle. In other
words, the curve consists of all points whose polar coordinates satisfy the equation r = f(0).

You can parametrize such a curve by
oo [rcos@\ [ f(0)cosh
2(6) = <'r sin 9) N (f(@) sin9> ' (15.8)

#(0) = f(0) cos0i + f(6) sinbj.

or,

X2

H6 #(0) = f(0) cosbi + f(0) sinfj

g

Figure 15.17: the polar curve for f(6) = sin 26

You can apply the formulas for velocity, speed and arclength to this parametrization, but instead
of doing the straightforward calculation, let’s introduce some more notation. For any angle 6
we define the vector

Lo fcosB\ A
u(0) = (sin9> = cos 01 + sin 0.
The derivative of u is
o (- sin 6 _winnd <
u (0) = <cos€>_ sin 02 + cos 07.

The vectors 4(6) and 4'(#) are perpendicular unit vectors.
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Then we have

so by the product rule one has

xy

Figure 15.19: derivatives in polar coordinates

Since % (0) and 4'(0) are perpendicular unit vectors this implies

v(0) = |FO)]l = vV f(0)> + f(0)>.
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The length of the piece of the curve between polar angles o and 3 is therefore

Length — / NS (15.9)

You can also read off that the angle ¢ between the radius OX and the tangent to the curve
satisfies
f(9)

Y= )
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15.11 PROBLEMS

SKETCHING PARAMETERIZED CURVES

Sketch the curves which are traced out by the following parametrizations. Describe the motion
(is the curve you draw traced out once or several times? In which direction?)

In all cases the parameter is allowed to take all values from —oo to co.

If a curve happens to be the graph of some function zy = f(z1) (or y = f(z) if you prefer),

then find the function f(--

Is there a geometric interpretation of the parameter as an angle, or a distance, etc?

971.

972.

973.

974.

975.

976.

977.

978.

979.

980.

981.

982.

Z(t) =

(

0=
0=(:
o=
0=(
0=(c
o=
0=
0=
0=
0=
0=

1-1¢
2—-1

)

3t + 2

3t+—2>

t?

sin t>

)
)

)

)

sint

cos 2t

)

cos 25t

sin 2575)

1+ cost
1+sint

2 cos t)

t
t3

sint

)

)

412

412

412

412

+412

412

412

1413

+413

+413

413

414

* k%

Find parametric equations for the curve
traced out by the X in each of the following
descriptions.

983. A circle of radius 1 rolls over the z axis,
and X is a point on a spoke of the circle at a
distance a > 0 from the center of the circle
(the case a = 1 gives the cycloid.) {414

984. A circle of radius r > 0 rolls on the out-
side of the unit circle. X is a point on the

rolling circle (These curves are called epicy-
cloids.)

985. A circle of radius 0 < r < 1 rolls on the
inside of the unit circle. X is a point on the
rolling circle.

986. Let O be the origin, A the point (1,0),
and B the point on the unit circle for which
the angle ZAOB = 6. Then X is the point
on the tangent to the unit circle through B
for which the distance BX equals the length
of the circle arc AB. 1414

987. X is the point where the tangent line at
Z(0) to the helix of example 15.1.8 intersects
the z1x9 plane.
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CURVE SKETCHING, USING THE TANGENT VECTOR

—

988. Consider a triangle ABC' and let a,b
and € be the position vectors of A, B and

C.
(i)
by
B(t) = (1 —t)%d + 2t(1 — t)b + t%¢,
goes through the points A and C, and that
at these points it is tangent to the sides of
the triangle. Make a drawing. 7414
(ii) At which point on this curve is the tan-

gent parallel to the side AC' of the triangle?
1414

989. Let a, 5, é, d be four given vectors. Con-
sider the parametric curve (known as a
Bezier curve)

B(t) = (1—t)>@+3t(1—t)2b+3t>(1—t)é+t>d
where 0 <t < 1.

Compute #(0),#(1),# (0), and &' (1).

The characters in most fonts (like the fonts

used for these notes) are made up of lots of
Bezier curves.

Show that the parametric curve given

990. Sketch the following curves by finding

356

all points at which the tangent is either hor-
izontal or vertical (in these problems, a is a
positive constant.)

@ &0~ (/) 415
(i) a0 = (o) 415
i) #(0) = (5, 415
) &0 = (40, ) 415
) @0 = (0, ') 415
i) (0= (o) 115
i) (o) = (0 10) 415
i) ()= ()

i) 0= (') 415



PRODUCT RULES

991. If a moving object has position vector

Z(t) at time ¢, and if it’s speed is constant,
then show that the acceleration vector is al-
ways perpendicular to the velocity vector.
[Hint: differentiate v? = ©-% with respect to
time and use some of the product rules from
§15.3.]

992. If a charged particle moves in a magnetic

field E, then the laws of electromagnetism
say that the magnetic field exerts a force on
the particle and that this force is given by
the following miraculous formula:

I_f’:qi)’xé.

where ¢ is the charge of the particle, and v
is its velocity.

Not only does the particle know calculus
(since Newton found F = mada), it also
knows vector geometry!

Show that even though the magnetic field
is pushing the particle around, and even
though its velocity vector may be changing
with time, its speed v = ||9|| remains con-
stant.

993. NEWTON'’s law of gravitation states that
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the Earth pulls any object of mass m to-
wards its center with a force inversely pro-
portional to the squared distance of the ob-
ject to the Earth’s center.

(i) Show that if the Earth’s center is the
origin, and ¥ is the position vector of the ob-
ject of mass m, then the gravitational force
is given by

F= —CH_TH:; (C is a positive constant.)
7

[No calculus required. You are supposed

to check that this vector satisfies the de-

scription in the beginning of the problem,

i.e. that it has the right length and direc-

tion.]

(if) If the object is moving, then its angu-
lar momentum is defined in physics books
by the formula L = m# x ¥. Show that,
if the Earth’s gravitational field is the only
force acting on the object, then its angular
momentum remains constant. [Hint: you
should differentiate L with respect to time,
and use a product rule.]



LENGTHS OF CURVES

994. Find the length of each of the following

curve segments. An “[” indicates a diffi-
cult but possible integral which you should
do; “[[” indicates that the resulting integral
cannot reasonably be done with the meth-
ods explained in this course — you may leave
an integral in your answer after simplifying
it as much as you can. All other problems
lead to integrals that shouldn’t be too hard.

(i) The cycloid Z(0) = (ggf:ig;g%), with
0<6<2m.

cost

(ii) [[[] The ellipse &(t) = (A sint) with

0<t<2m.
<tg> with

. . - t
(iv) [[[] The Sine graph &(t) = (sint>
with 0 <t <.

(v)  The evolute of the circle & =
cost +tsint .
( )(WlthOStSL).

(iii) [f] The parabola &(t) =
0<t<1.

sint — tcost

(vi)

coshx =

The Catenary, i.e. the graph of y =
X —T

ete” for —a <z < a.

(vii) The Cardioid, which in polar coordi-

nates is given by r = 1 + cos#, (|0| < 7), so

0= (T niome)

(viii) The Heliz from example 15.1.8,
cosd

Z(0) = | sinf |,0<0 <27
ab

995. Below are a number of parametrized
curves. For each of these curves find all
points with horizontal or vertical tangents;
also find all points for which the tangent is
parallel to the diagonal. Finally, find the
length of the piece of these curves corre-
sponding to the indicated parameter inter-
val (I tried hard to find examples where the

integral can be done).

@ e - (") eses
@) @)= () 1<r<2
i) &0 = (, '5)  0stsys
) &0 = (St ) <]
v a0 = (i) 0<t<1

(The last problem is harder, but it can be
done. In all the other ones the quantity un-
der the square root that appears when you
set up the integral for the length of the curve
is a perfect square.)

996. Consider the polar graph r = e, with
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—00 < 0 < oo, where k is a positive con-
stant. This curve is called the logarithmic

spiral.
(i) Find a parametrization for the polar
graph of r = e*?.

(if) Compute the arclength function s(6)

starting at 6y = 0.

(iii) Show that the angle between the radius
and the tangent is the same at all points on
the logarithmic spiral.

(iv) Which points on this curve have hori-
zontal tangents?

997. The Archimedean spiral is the polar

graph of r = 6, where 6 > 0.
(i) Which points on the part of the spiral

with 0 < # < 7 have a horizontal tangent?
Which have a vertical tangent?

(if) Find all points on the whole spiral (al-
lowing all # > 0) which have a horizontal
tangent.

(iii) Show that the part of the spiral with
0 < 0 < 7 is exactly as long as the piece of
the parabola y = %3}2 between z = 0 and
x = m. (It is not impossible to compute the
lengths of both curves, but you don’t have
to to answer this problem!)



KEPLER’s LAW’s

Kepler’s first law: Planets move in a plane in an ellipse with the sun at one focus.

Kepler’s second law: The position vector from the sun to a planet sweeps out area at a
constant rate.

Kepler’s third law: The square of the period of a planet is proportional to the cube of its
mean distance from the sun. The mean distance is the average of the closest distance and the
furthest distance. The period is the time required to go once around the sun.

Let p = zi + yj+ zk be the position of a planet in space where z, y and z are all function of
time t. Assume the sun is at the origin. Newton’s law of gravity implies that

d’p I3
(1)

“r_ ., P
dtz — ||pP?

where a is —GM, G is a universal gravitational constant and M is the mass of the sun. It does
not depend on the mass of the planet.

First let us show that planets move in a plane. By the product rule

d,. dp.  dF dp. . d%

By (1) and the fact that the cross product of parallel vectors is 0 the right hand side of (2) is
0. It follows that there is a constant vector & such that at all times

dp
—»X il 3
Px— =0 (3)
Thus we can conclude that both the position and velocity vector lie in the plane with normal
vector ¢. Without loss of generality we assume that ¢ = Sk for some scaler 5 and p = xi + yj.
Let x = rcos(f) and y = rsin(f) where we consider r and 6 as functions of t. If we calculate
the derivative of p' we get

dr do, - .dr do

pri [% cos(f) — rsm(@)a] i+ [E sin(f0) + rcos(ﬁ)a] J (4)
Since p’ X ?Tf = 5E we have
dr . do . dr . do
rcos(f) (a sin(6) + r cos(G)E) — rsin(0) (a cos(f) —r bln(@)a) =p (5)

After multiplying out and simplifying this reduces to

29

= (6)

The area swept out from time ¢y to time t; by a curve in polar coordinates is

1 [t ,de
A= 227 dt
2/to "t ()

By (6) A is proportional to t; — tg. This is Kepler’s second law.
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We will now prove Kepler’s third law for the special case of a circle. So let T be the time it
takes the planet to go around the sun one time and let r be its distance from the sun. We will
show that

T? (27)?
PR ®)
The second law implies that 6(¢) is a linear function of t and so in fact
do  2m
= 22 9
a T ©)

Since r is constant we have that % = 0 and so (4) simplifies to

dap 27 - 21 -
ditj =[-r sin(@)%] i+ [r cos(@)%] J (10)
Differentiating once more we get
d2ﬁ 2w 94 - . 27 27 = 2 2,
D7 [reosto) ()] i+ [-rsin®) ()] 7 = - (225 (1)
Noting that r = ||p]| and using (1) we get
o 2.2
3= —(?) (12)

from which (8) immediately follows.

Complete derivations of the three laws from Newton’s law of gravity can be found in T.M.Apostal,
Calculus vol I, Blaisdel(1967), p.545-548. Newton deduced the law of gravity from Kepler’s
laws. The argument can be found in L.Bers, Calculus vol IT , Holt,Rinhart,and Winston(1969),
p.748-754.

The planet earth is 93 million miles from the sun. The year has 365 days. The moon is 250,000
miles from the earth and circles the earth once every 28 days. The earth’s diameter is 7850
miles. In the first four problems you may assume orbits are circular. Use only the data in this
paragraph.

998. The former planet Pluto takes 248 years satellite should orbit? 1416
to orbit the sun. How far is Pluto from the
sun? Mercury is 36 million miles from the
sun. How many (Earth) days does it take
for Mercury to complete one revolution of ~ 1002. The Kmart7 satellite is to be launched
the sun? 1415 into polar earth orbit by firing it from a large

cannon. This is possible since the satellite

is very small, consisting of a single blinking
blue light. Polar orbit means that the orbit
passes over both the north and south poles.

1001. Find the ratio of the masses of the sun
and the earth. 1416

999. Russia launched the first orbital satelite
in 1957. Sputnik orbited the earth every 96
minutes. How high off the surface of the

carth was this satelite? 1416 Let p(t) be the point on the earth’s surface
1000. A communication satellite is to orbit the at which the blinking blue light is directly
earth around the equator at such a distance overhead at time t. Find the largest orbit
so as to remain above the same spot on the that the Kmart7 can have so that every per-
earth’s surface at all times. What is the dis- son on earth will be within 1000 miles of p(t)
tance from the center of the earth such a at least once a day. You may assume that
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the satellite orbits the earth exactly n times

per day for some integer n. 1416

1003. Let A be the total area swept out by an

elliptical orbit. Show that 8 = 2}, 1416

1004. Let E be an ellipse with one of the focal

points f. Let d be the minimum distance
from some point of the ellipse to f and let
D be the maximum distance. In terms of d
and D only what is the area of the ellipse
E?

Hint: The area of an ellipse is mab where a is

its minimum radius and b its maximum ra-
dius (both from the center of the ellipse). If
f1 and f5 are the focal points of E then the
sum of the distances from f; to p and f5 to
p is constant for all points p on F. 1416

1005. Halley’s comet orbits the sun every 77
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Its closest approach is 53 million
What is its furthest distance from
the sun? What is the maximum speed of
the comet and what is the minimum speed?
1416

years.
miles.



Chapter 16

Miscellaneous exercises

For graphing problems you may be asked to determine

a) where f(x) is defined,

b) where f(x) is continuous,

c¢) where f(x) is differentiable,

d) where f(x) is increasing and where it is decreasing,

) where f(x) is concave up and where it is concave down,
) what the critical points of f(x) are,

g) where the points of inflection are,

h) what (if any) the horizontal asymptotes to f(z) are, and
i) what (if any) the vertical asymptotes to f(x) are.

(
(
(
(
(e
(f
(
(
(

(A horizontal line y = b is called a horizontal asymptote if li_>m f(x)y=0bor lim f(z)=0>b. A
€T oo T—r—00
vertical line x = a is called a vertical asymptote if lim f(z) = +o0 or lim f(x) = +o0.)
r—a+ r—a—

For proofs the question will be carefully worded to indicate what you may assume in your
proof. (See Problem 1015 for example.) In this document you may use without proof any
previously asserted fact. For example, you may use the fact that sin’(6) = cos() to prove that
cos'(f) = —sin(f) since the former question precedes the latter below. (See Problems 1017
and 1018.) You may always use high school algebra (like cos(#) = sin(7/2 — #)) in your proofs.

1006. State and prove the Sum Rule for derivatives. You may use (without proof) the Limit Laws.

1007. State and prove the Product Rule for derivatives. You may use (without proof) the Limit
Laws.

1008. State and prove the Quotient Rule for derivatives. You may use (without proof) the Limit
Laws.

1009. State and prove the Chain Rule for derivatives. You may use (without proof) the Limit
Laws. You may assume (as the proof in the Stewart text does) that the inner function has a
nonzero derivative.

1010. State the Sandwich! Theorem.

n

1011. Prove that di = nz"" !, for all positive integers n.
T

I Also called the Squeeze Theorem
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n

d
1012. Prove that di =nz"" ! forn = 0.
x

n

1013. Prove that di = na"" !, for all negative integers n.
x

T

d
1014. Prove that —— = ¢?.
dx

1015. Prove that limg_,( % =1.

You may assume without proof the Sandwich Theorem, the Limit Laws, and that the sin and
cos are continuous. Hint: See Problem 1101.

1016. Prove that limg o =2 — o,

1017. Prove that dsinz = COST.
dx
dcoszx .
1018. Prove that = —sinz
dzx
1019. Prove that dtanz = sec? .
€T
dcot
1020. Prove that CORT _ —csc? .
T
1 1
1021. Prove that dInz = —,
dzr T
1022. P that darcsin x 1
. Prove tha = .
dx V1—zx2
darccosx 1
1023. Prove that . = —m.
1
1024. Prove that L2TCART _ .
dx 1+ 2

1025. True or false? A differentiable function must be continuous. If true, give a proof; if false,
illustrate with an example.

1026. True or false? A continuous function must be differentiable. If true, give a proof; if false,
illustrate with an example.

1027. Explain why lin%) 1/x does not exist.
T—

1028. Explain why lim tan# does not exist.

0—m/2

1029. Explain why lin%) sin(1/x) does not exist.
Tr—r

1030. Explain why lim cos6 does not exist.
0—o00

1031. Let sign(x) be the sign function (see example 3.1) Explain why liH(l) sign(z) does not exist.
i d

1032. Explain why linr[lJ 2'/Y does not exist.
Yy—>

1033. Explain why lim1 21/(@=1) does not exist.
T

1034. Calculate lim flz + Az) — f(z)

when f(z) = sin 2z.
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1035.

1036.

1037.

1038.

1039.

1040.

1041.

1042.

1043.

1044.

1045.

1046.

1047.

1048.

Calculate lim flz+h) - f(z)
h—0 (z+h)—=z

when f(x) = cos2z.

Calculate ;1_1% W when f(z) = sin(z?).
f(x) = f(xo)

Calculate lim when f(x) = cos(z?).

T—xQ Tr — X0

Calculate lim flz + Az) — f(x)
Az—0 (x4 Az) —x

Calculate lim flz+ Ax) — f(x)

Calculate lim flz+ Az) — f(x)
Az—0 (v + Az) — =z

Calculate lim flz + Ax) — f(x)
Ar=0 (x4 Az)—=x

Calculate lim flz+ Az) — f(x)
Az—0  (z+ Az) — =z

Calculate lim flz + Az) — f(x)
Ar—0 (v 4 Az)—=x

flz+ Ax) — f(x)

when f(z) = Vsinz.

when f(z) = zsinz.

when f(z) = eV®.

when f(r) = esin?,

when f(z) = In(azx + b).

when f(z) = e®*7*.

Calculate Alglﬁgo @t hr)—z when f(z) = z*.
Azr) — .
Caleulate Alaicgo f(ﬁ(Uw‘:_ AJU;) _fix) when f(z) = %

Calculate Algigrgo f(?x—:AAxg)_—faEx) when f(z) = vaz + .

Calculate lim flz+ Az) — f(x)
Az—0 (v + Az) — =z

when f(z) = (mx + ¢)".

1274/3 — 1254/3
2

Use differentiation to estimate the number

approximately without a calcu-

lator. Your answer should have the form p/q where p and ¢ are integers. Hint: 5% = 125.

1049.
1050.
1051.
1052.

1054. Find the equations of the tangent and normal to the curve

What is the derivative of the area of a circle with respect to its radius?

What is the derivative of the volume of a sphere with respect to its radius?

Find the slope of the tangent to the curve y = 23 — x at = = 2.

Find the equations of the tangent and normal to the curve y = 3 — 2z + 7 at the point
(1,6).

1053. Find the equation of the tangent line to the curve 3zy? — 222y = 1 at the point (1,1). Find
d*y/dx? at this point.

(acosf,bsinb).

1055. Find the equations of the tangent and normal to the curve

(asecH,btand).
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1056. Find the equations of the tangent and normal to the curve c¢?(2? + y?) = 2%y? at the point
(¢/cosb,c/sind).

1057. Find the equations of the tangent and normal to the parabola y?> = 4ax at the point
(at?,2at).
2 2

1058. Show that the equation of the tangent to the hyperbola % — ‘Z—Q = 1 at the point (p,q) is
a
TD Y4 _
az b

1059. Find the equations of the tangent and normal to the curve y = 2* — 623 + 1322 — 10z + 5
at the point where x = 1.

at x = 0.

1
1060. Find the linear approximations to f(x) =
pp f(z) Jits
1061. Find the linear approximations to f(x) = v/1+x at z = 0.

1062. Find the linear approximations to f(z) = (1+12) at x = 0.
1063. Find the linear approximations to f(z) = (1 + )3 at z = 0.
1064. Find the linear approximations to f(x) = secx at x = 0.
1065. Find the linear approximations to f(x) = zsinz at = 0.
1066. Find the linear approximations to f(z) = 23 at z = 1.

1067. Find the linear approximations to f(z) = /3 at z = —8.
1068. Find the linear approximations to f(#) =sinf at 6 = 7/6.
1069. Find the linear approximations to f(z) = 27! at x = 4.
1070. Find the linear approximations to f(z) = 2® —x at x = 1.
1071. Find the linear approximations to f(x) = +/z at x = 4.

1072. Find the linear approximations to f(z) = Va2 +9 at x = —4.

1073. Use quadratic approximation to find the approximate value of +/401 without a calculator.
Hint: /400 = 20.

1/4

1074. Use quadratic approximation to find the approximate value of (255)"/* without a calculator.

Hint: 2561/4 = 4.

1
1075. Use quadratic approximation to find the approximate value of m without a calculator.

1076. Approximate (1.97)® without a calculator. (Leave arithmetic undone.)

1077. Let f be a function such that f(1) = 2 and whose derivative is known to be f'(z) = va3 + 1.
Use a linear approximation to estimate the value of f(1.1). Use a quadratic approximation to
estimate the value of f(1.1).

1078. Find the second derivative of =7 with respect to .
1079. Find the second derivative of In x with respect to x.
1080. Find the second derivative of 5% with respect to .
1081. Find the second derivative of tan# with respect to 6.
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1082. Find the second derivative of z2e3* with respect to .
1083. Find the second derivative of sin 3z cos 5z with respect to x.
1084. Find the third derivative of u* with respect to w.

1085. Find the third derivative of In x with respect to x.

1086. Find the second derivative of tanx with respect to x.

2

d“0 Y
1087. If 0 = i how that — = ————.
arcsin y show tha aE =2
d*y
1088. If y = e~ !cost show that o 2¢ tsint.
2

d
1089. If u = ¢ + cot ¢ show that sin®¢ - Wg — Qu+ 2t = 0.

2

d d
1090. If y = €% show that cos® z - ey (14 sin 23:)—3/ =0.
dx? dx

1091. State L’Hopital’s rule and give an example which illustrates how it is used.

1092. Explain why L’Hopital’s rule works. Hint: Expand the numerator and the denominator in
terms of Ax.

1093. Give three examples to illustrate that a limit problem that looks like it is coming out to 0/0
could be really getting closer and closer to almost anything and must be looked at a different
way.

1094. Give three examples to illustrate that a limit problem that looks like it is coming out to 1°°
could be really getting closer and closer to almost anything and must be looked at a different
way.

1095. Give three examples to illustrate that a limit problem that looks like it is coming out to 0°
could be really getting closer and closer to almost anything and must be looked at a different
way.

1096. Give three examples to illustrate that a limit problem that looks like it is coming out to
oo — oo could be really getting closer and closer to almost anything and must be looked at a
different way.

1097. Explain how limit problems that come out to co/oo can always be converted into limit
problems that come out to 0/0 and why doing such a conversion is useful.

1098. Explain how limit problems that come out to oo — oo can be converted into limit problems
that come out to 0/0 and why doing such a conversion is useful.

1099. Explain how limit problems that come out to 0° can be converted into limit problems that
come out to 0/0 and why doing such a conversion is useful.

1100. Explain how limit problems that come out to 1°° can be converted into limit problems that
come out to 0/0 and why doing such a conversion is useful.

1101. Use calculus to show that the area A of a sector of a circle with central angle  is A = (6/2) R?
where R is the radius and 6 is measured in radians. Hint: Divide the sector into n equal sectors
of central angle A§ = 0/n and area AA. As in the proof (see Problem 1015) that

sin(A0)

lim ——~2 =1
AGS0 A ’
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the area A A lies between the areas of two right triangles whose areas can be expressed in terms
of R and trig functions of Af. Apply the Sandwich Theorem to A = nAA and use ’'Hopital’s
rule or Problem 1015.

1102. Use calculus to show that the area of a circle of radius R is 7R2. Hint: The area of a sector
is a more general problem. (See problem 1101.)

1103. For which values of z is the function f(x) = 22 + 32 + 4 continuous? Justify your answer
with limits if necessary and draw a graph of the function to illustrate your answer.

2?26 if 7 £ 3,

1104. For which values of x is the function f(x) = . z=3 . 5 continuous? Justify your
) nr= 9y
answer with limits if necessary and draw a graph of the function to illustrate your answer.
. : . ST if g £ 0, : .
1105. For which values of x is the function f(z) = ) x " 0 continuous? Justify your
) nIxr= 9

answer with limits if necessary and draw a graph of the function to illustrate your answer.
1106. Determine the value of k for which the function

sin 2x
if
fay=4 5o FEFEO
k, if x =0,

is continuous at x = 0. Justify your answer with limits if necessary and draw a graph of the
function to illustrate your answer.

1107. What does it mean for a function f(z) to be continuous at = = a?
1108. What does it mean for a function f(x) to be differentiable at z = a?
1109. What does f’(a) indicate you about the graph of y = f(x)? Explain why this is true.

1110. What does it mean for a function to be increasing? Explain how to use calculus to tell if a
function is increasing. Explain why this works.

1111. What does it mean for a function to be concave up? Explain how to use calculus to tell if
a function is concave up. Explain why this works.

1112. What is a horizontal asymptote of a function f(z)? Explain how to justify that a given line
y = b is a horizontal asymptote of f(z).

1113. What is a vertical asymptote of a function f(z)? Explain how to justify that a given line
x = a is an vertical asymptote of f(x).

1114. If f(x) = |z|, what is f/(=2)?
1115. Find the values of @ and b so that the function

22 +3x+a, ifz<l,
flx) = .
bx + 2, ifx>1,

is differentiable for all values of z.

{2—@ if 2 > 1,

1116. Graph f(x) =
ph f(z) x, o<z <I1.

1117. Graph f(x)

24z, ifx>0,
2—z, ifz<O.
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11—z fex<l1
1118. Graph f(z) = ’ ’
ph f(z) {xQ—l, if x> 1.

1119. Graph f(z) =z + 1/z.

242z -2
1120. Graphf(x):Lxllofor5<a:<9.
Tz —
1121. Graph f(z) = ——
+ Graph f(z) = 5~

1122. Graph f(z) = ze®.
1123. State Rolle’s theorem and draw a picture which illustrates the statement of the theorem.

1124. State the Mean Value Theorem and draw a picture which illustrates the statement of the
theorem.

1125. Explain why Rolle’s theorem is a special case of the Mean Value Theorem.

1126. Let f(x) =1 — x*/3. Show that f(—1) = f(1) but that there is no number ¢ in the interval
(—1,1) such that f/(c¢) = 0. Why does this not contradict Rolle’s theorem?

1127. Let f(x) = (z — 1)72. Show that f(0) = f(2) but that there is no number c in the interval
(0,2) such that f'(¢) = 0. Why does this not contradict Rolle’s theorem?

1128. Show that the Mean Value Theorem is not applicable to the function f(z) = |z| in the
interval [—1,1].

1129. Show that the Mean Value Theorem is not applicable to the function f(z) = 1/x in the
interval [—1, 1].

1130. Find a point on the curve y = 22 where the tangent is parallel to the chord joining (1,1)
and (3,27).

1131. Show that the equation z° 4+ 10z 4+ 3 = 0 has exactly one real root.

1132. Find the local maxima and minima of f(z) = (52 — 1)2 + 4 without using derivatives.

1133. Find the local maxima and minima of f(x) = —(x — 3)% + 9 without using derivatives.

1134. Find the local maxima and minima of f(x) = —|x + 4| + 6 without using derivatives.

1135. Find the local maxima and minima of f(x) = sin 2z 4+ 5 without using derivatives.

| sin 4z + 3| without using derivatives.

r* — 6222 + 1202 + 9.

(z) =
(z) =
(z) =
1136. Find the local maxima and minima of f(z) =
(z) =
1138. Find the local maxima and minima of f(z) = (z — 1)(z + 2)%.
(z) =
(z)
(z)
()

1137. Find the local maxima and minima of f(z

—(z —1)3(z +1)2
=z/2+2/x for x > 0.
= 223 — 24z + 107 in the interval [1, 3].

1139. Find the local maxima and minima of f(x
1140. Find the local maxima and minima of f(z
1141. Find the local maxima and minima of f(x

1142. Find the local maxima and minima of f(z) =sinz + (1/2)cosz in 0 < x < /2.

1 X
1143. Show that the maximum value of (> is el/e,
T

1144. Show that f(z) = x + 1/x has a local maximum and a local minimum, but the value at the
local maximum is less than the value at the local minimum.
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1145. Find the maximum profit that a company can make if the profit function is given by
p(z) = 41 + 24z — 1822,

1146. A train is moving along the curve y = x? + 2. A girl is at the point (3,2). At what point
will the train be at when the girl and the train are closest? Hint: You will have to solve a cubic
equation, but the numbers have been chosen so there is an obvious root.

1147. Find the local maxima and minima of f(x) = —z + 2sinx in [0, 27].
1148. Divide 15 into two parts such that the square of one times the cube of the other is maximum.

1149. Suppose the sum of two numbers is fixed. Show that their product is maximum exactly
when each one of them is half of the total sum.

1150. Divide a into two parts such that the pth power of one times the gth power of the other is
maximum.

1151. Which number between 0 and 1 exceeds its pth power by the maximum amount?

1152. Find the dimensions of the rectangle of area 96 cm? which has minimum perimeter. What
is this minimum perimeter?

1153. Show that the right circular cone with a given volume and minimum surface area has altitude
equal to /2 times the radius of the base.

1154. Show that the altitude of the right circular cone with maximum volume that can be inscribed
in a sphere of radius R is 4R/3.

1155. Show that the height of a right circular cylinder with maximum volume that can be inscribed
in a given right circular cone of height h is h/3.

1156. A cylindrical can is to be made to hold 1 liter of oil. Find the dimensions of the can which
will minimize the cost of the metal to make the can.

1157. An open box is to be made out of a given quantity of cardboard of area p?. Find the
maximum volume of the box if its base is square.

1158. Find the dimensions of the maximum rectangular area that can be fenced with a fence 300
yards long.

1159. Show that the triangle of the greatest area with given base and vertical angle is isosceles.
1160. Show that a right triangle with a given perimeter has greatest area when it is isosceles.
1161. What do distance, speed and acceleration have to do with calculus? Explain thoroughly.

1162. A particle, starting from a fixed point P, moves in a straight line. Its position relative to
P after t seconds is s = 11 + 5t + 2 meters. Find the distance, velocity and acceleration of the
particle after 4 seconds, and find the distance it travels during the 4th second.

1163. The displacement of a particle at time ¢ is given by x = 2t3 — 5t2 4 4¢ + 3. Find (i) the time
when the acceleration is 8cm/ s?, and (ii) the velocity and displacement at that instant.

1164. A particle moves along a straight line according to the law s = ¢3 — 6t 4+ 19t — 4. Find (i) its
displacement and acceleration when its velocity is 7m/s, and (ii) its displacement and velocity
when its acceleration is 6m/s?.

1165. A particle moves along a straight line so that after ¢ seconds its position relative to a fixed
point P on the line is s meters, where s = t3 — 4¢2 4+ 3t. Find (i) when the particle is at P, and
(ii) its velocity and acceleration at these times ¢.
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1166. A particle moves along a straight line according to the law s = at? — 2bt + ¢, where a, b, c
are constants. Prove that the acceleration of the particle is constant.

1167. The displacement of a particle moving in a straight line is « = 2t3 — 9t? + 12t + 1 meters at
time ¢t. Find (i) the velocity and acceleration at t = 1 second, (ii) the time when the particle
stops momentarily, and (iii) the distance between two stops.

1168. The distance s in meters travelled by a particle in ¢ seconds is given by s = ae! + be".
Show that the acceleration of the particle at time ¢ is equal to the distance the particle travels
in ¢ seconds.

1169. A ladder 10 feet long rests against a vertical wall. If the bottom of the ladder slides away
from the wall at a speed of 2 ft/s, how fast is the angle between the top of the ladder and the
wall changing when the angle is 7/4 radians?

1170. A 